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Abstract 
Recently, dew computing has drawn extreme attention in response to the ever-increasing 
demand for processing massive data rapidly in the Industrial Internet of Things (IIoT). 
However, the vulnerability of such infrastructures to cyberattacks has also risen drastically. 
Localized services and uninterrupted functionality even during disconnections represent key 
advantages of dew computing. Nevertheless, due to computational resource limitations and 
connectivity instabilities, conventional intrusion detection systems, which are mostly based on 
or require massive computational resources, may lack efficiency in such networks. In contrast 
to existing dew or edge intrusion detection approaches that commonly rely on centralized 
training with raw traffic transferred to a server, or adopt heavier deep architectures that are less 
suitable under dew constraints, this study proposes a single-layer 1D CNN that offers a 
practical balance between detection performance and deployment feasibility in resource-
constrained and intermittently connected environments. The proposed model was implemented 
through federated learning on a fully dew-layer architecture, where the aggregation server and 
all participating nodes are deployed within the dew layer and proceed with the training process 
without dependence on the upper (fog or cloud) layers. This approach reduces bandwidth 
consumption, ensures data privacy, and significantly decreases latency, enabling effective 
training, even under unstable conditions. Edge-IIoTset data were preprocessed, and influential 
features were extracted through mutual information (MI) during the development process. The 
proposed model was evaluated in binary, six-class, and fifteen-class scenarios in a centralized 
setting and then simulated in a federated setting. It was found to show stable performance under 
both settings, yielding an average detection accuracy of 97.01% under the fifteen-class scenario 
in the centralized setting and 96.67% in the federated setting. The results of this study will be 
of great help to future researchers in advancing their goals in this research field. 
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1. Introduction 
 
Considering the ever-increasing growth of the Industrial Internet of Things (IIoT) and the 
continuous generation of sensitive data, centralized architectures such as cloud computing 
cannot individually meet the real-time requirements of such systems since the continuous 
transmission of massive data to cloud centers raises latency and bandwidth consumption, and 
the massive dependence on stable connectivity threatens uninterrupted functionality [1,2]. To 
address this challenge, dew computing was introduced as the closest layer to the data source. 
It fulfills processing at the sensor and actuator level and remains autonomous even in the event 
of Internet disconnections [3–5]. In light of its operational independence, cooperation with 
upper layers, and real-time responsiveness, dew computing has become a key setting for 
reliable systems in areas such as IIoT, health, smart agriculture, autonomous vehicles, and 
robotics [2,6]. Furthermore, security and privacy are protected by storing the data in the 
generation location and decreasing the demand for raw data transmission [7,8]. 
Apart from its advantages, the dew layer encounters a set of intrinsic challenges. Limited 
processing power, memory, and bandwidth prevent the fulfillment of heavy and complex tasks 
and increase energy consumption [4,9]. Hardware and software heterogeneity between nodes 
challenges the scalability and maintenance of systems [5]. Moreover, data protection and 
security are a key dew-layer challenge to be addressed [9]. Hence, this study particularly 
focuses on the security challenge in the dew layer. This challenge can be rooted in the 
processing, communication, and structural limitations of the dew layer as lightweight 
equipment with no strong protective infrastructure cannot implement expensive security 
mechanisms, and a decentralized structure raises the risk of rapid attack propagation [7,8,10]. 
Therefore, the dew layer has a higher vulnerability than other layers to unauthorized access, 
sensitive data leakage, real-time and injection attacks, malware contamination, identity 
spoofing, and man-in-the-middle attacks, which could lead to serious functionality 
interruptions [4,7,9]. If this challenge is not addressed effectively, the compromise of dew 
nodes can propagate to upper layers and lead to critical data corruption, disrupting high-level 
decision-making and inducing serious functionality interruptions [7,8]. Therefore, it is crucial 
to develop lightweight and rapid intrusion detection systems for the dew layer.  
Security approaches proposed for IoT in the literature can be divided into three groups:  

(I) Distributed intrusion detection systems operating through node collaboration and 
trust mechanisms based on machine learning (ML) or Bayesian inference [11,12]; 
however, they are vulnerable to insider attacks and would require a more intricate 
design for heterogeneous settings; 

(II) Cloud-based systems perform security analysis in the central layer and utilize strong 
resources [13,14]. However, such systems are dependent on permanent Internet 
connections and have high latency; 

(III) ML-based systems have been employed to detect complex threats in recent years 
[15–18]. Despite their efficiency in extracting hidden nonlinear patterns from raw 
data, ML-based systems would not be efficient for the dew layer due to their 
computational complexity and demand for massive data and high energy. 

To address the communication limitations and security requirements of the dew layer, the 
present study implements a lightweight 1D-CNN intrusion detection system via federated 
learning using a fully dew-layer architecture. In the proposed model, both the aggregation 
server and all nodes are within the dew layer, and training is performed independently of 
cloud/fog layers. To cope with limited computational resources, the model was designed with 
a small set of parameters and a short inference path, compared to heavier deep architectures 
reported in the literature, such as CNN+LSTM+GRU and LSTM+CNN models [19,20], and 
input dimensionality would be decreased through MI-based feature selection. The exchange of 



data is limited to model updating, and no raw data is discharged from the nodes in light of 
federated aggregation. As a result, the proposed model not only significantly reduces 
bandwidth consumption and ensures privacy protection but also enables stable and low-latency 
training, even under unstable connectivity.  
A total of fifteen federated scenarios were designed and simulated to evaluate the proposed 
model comprehensively based on three parameters: (I) number of nodes (as a measure of 
network size and data distribution level), (II) participation rate (to address offline/absent 
nodes), and (III) number of training rounds (regarding limited computational resources). 
Finally, the performance of the proposed model was evaluated using the Edge-IIoTset [21] in 
binary, six-class, and fifteen-class classification scenarios.  
Overall, the main contributions of this study include: 

• Deploying a lightweight and efficient intrusion detection system for the dew layer, 
where lightweight is explicitly defined in terms of (i) parameter count, (ii) model size 
(memory footprint), and (iii) inference time. By reducing the number of trainable 
parameters, the proposed 1D-CNN lowers both the memory requirement and the 
computational burden, while its compact representation and short inference path enable 
fast on-device inference. Consequently, the model is practically deployable on dew 
servers (e.g., PC/workstation-class nodes) and supports continuous, cloud-independent 
operation under intermittent connectivity.  

• Reducing communication overhead in federated learning by transmitting model updates 
rather than raw traffic traces. Specifically, each round exchanges only the model 
parameters/updates, so the communication cost scales with the model size and number 
of participating clients, instead of the volume of raw data required in centralized 
training; this reduces bandwidth demand and improves feasibility under dew 
connectivity constraints. 

• Shortened training time in federated learning as the processing load is distributed 
between nodes, and the resulting parallelization shortens the model updating cycle. 
Therefore, the average total training time in federated learning is 58% shorter than in 
centralized learning. 

• Sensitivity analysis can be performed in federated learning. Drawing on controlled 
alteration of parameters, e.g., number of nodes, participation rate, and number of 
training rounds, the effect of each parameter is independently measured, evaluating the 
stability and efficiency of the system under various scenarios. 

The remainder of the study is organized as follows: Section 2 reviews related work; Section 3 
elaborates on the problem statement and key challenges; Section 4 highlights the main 
contributions of the study; Section 5 describes the proposed method; Section 6 provides and 
discusses the results; and Section 7 concludes the work and suggests future directions. 
 
2. Related Work 
 
Several attempts have been reported on improving the performance of intrusion detection 
systems in various computing settings, e.g., cloud, fog, and, more recently, dew computing in 
recent years. Given the unique characteristics of dew settings, such as limited resources, 
unstable connectivity, and the need for real-time responsiveness, it is essential to design 
lightweight, distributed intrusion detection systems with privacy protection. This section 
provides a structured review of the literature in three key contexts: (1) intrusion detection 
systems in dew computing, (2) intrusion detection models in other computing settings, e.g., 
cloud, fog, and edge computing, and (3) reports on intrusion detection using Edge-IIoTset.  
 



2.1. Intrusion detection systems in dew computing settings 
Moussa and Alazzawi [10] proposed a system to detect cyberattacks in the cloud-dew 
architecture in the automotive IoT. Their model was based on a stacked autoencoder and would 
transmit raw data from end nodes to the dew server in a centralized structure. Although they 
sought to address the requirements of dew settings, their model remained dependent on raw 
data transmission to the dew servers and did not consider a processing distribution at the dew 
node level. As a result, their system was not aligned with resource limitations and real-time 
responsiveness in dew settings, and gaps remained to be filled in terms of resource consumption 
and data privacy. 
Singh et al. [7] developed the dew-as-a-service (DaaS) framework to deploy smart intrusion 
detection systems in the hybrid edge-dew architecture. The framework included the practical 
implementation of an ML model using the UNSW-NB15 dataset that would be performed in 
the dew layer and showed comparable performance with other models. Although the model 
had a lightweight structure that could be deployed within dew settings, processing was 
performed in a centralized setting in the dew server, with raw data being transmitted from nodes 
to the central dew server. Moreover, no mechanism was provided to distribute training or 
narrow the bandwidth, and techniques such as federated learning were not utilized. They 
provided a major step toward the practical implementation of dew-based intrusion detection 
systems; however, they did not address the connectivity and resource limitations effectively 
and paved the way for future work in combining federated learning and lightweight 
architectures. 
Singh et al. [22] proposed a dew–cloud hierarchical federated learning framework for intrusion 
detection in the Internet of Medical Things (IoMT). Their architecture places learning on 
distributed dew servers and performs hierarchical aggregation to build a global model without 
raw data exchange, aiming to improve privacy and availability under unreliable connectivity. 
The intrusion detection model was based on a hierarchical long short-term memory (LSTM) 
and was evaluated on TON-IoT and NSL-KDD, reporting strong classification performance. 
Although the framework aligns with the motivation of dew computing, it relies on recurrent 
deep models and hierarchical training that can be computationally demanding, while the paper 
does not clearly quantify dew-node resource requirements or communication overhead under 
constrained and unstable dew settings. Therefore, further validation is needed to assess 
feasibility in lightweight, real-time dew deployments. 
 
2.2. Intrusion detection models in cloud, fog, and edge computing  
Meng et al. [11] introduced a Bayesian inference-based distributed intrusion detection system 
to cope with insider attacks in medical smartphone networks. It calculated trust in nodes based 
on the past experience and direct interactions and reported local results in a semi-centralized 
setting. Despite satisfactory performance in two real-life hospitals, the framework was limited 
to medical settings, lacked scalability for industrial or limited-resource scenarios, and did not 
leverage lightweight deep learning techniques.  
Liu et al. [23] developed a model to improve security and reliability in cloud computing 
services. Drawing on secure virtual machines, network traffic analysis, and policy-based access 
control, the model addressed security threats, including intrusion attacks. It did not have an ML 
or deep learning approach and required massive data transmission to the cloud and stable 
connectivity to a data center. Due to the lack of localized processing and distributed 
architecture, it is not efficient in settings where computational resources are limited and real-
time responsiveness is essential.  
Zhao et al. [16] proposed an integrated intrusion detection framework in which a deep belief 
network (DBN) was employed for feature extraction, whereas a probabilistic neural network 
(PNN) would be used for classification. Particle swarm optimization (PSO) was utilized to 



optimize the architecture, and the results on the KDD Cup 1999 dataset revealed a remarkable 
improvement in accuracy and speed compared to the basic methods. The model, however, was 
designed for centralized settings of strong computational resources and was inefficient in 
applications with limited computational resources or a distributed architecture, e.g., dew 
computing. 
Tian et al. [18] introduced an improved intrusion detection approach based on the DBN in 
which the optimized PSO would be exploited to tune hyperparameters. The architecture 
involved several restricted Boltzmann machine (RBM) layers and a support vector machine 
(SVM) layer for the ultimate classification and outperformed the basic models and similar 
hybrid frameworks to the KDD Cup 1999 dataset. However, it was based on centralized 
processing and had no distributed mechanism or compatibility with settings of limited and 
unstable resources, such as dew computing. 
 
2.3. Reports on the Edge-IIoTset 
2.3.1. Centralized learning 
Tareq et al. [24] compared the ToN-IoT, UNSW-NB15, and Edge-IIoTset datasets for use in 
deep learning to detect cyberattacks. Recurrent neural network (RNN), LSTM, and gated 
recurrent unit (GRU) models were compared within centralized learning settings on Edge-
IIoTset, with GRU showing higher performance in accuracy and complexity. All models were 
dependent on centralized processing and full raw data transmission to the central server and 
lacked compatibility with distributed settings with limited resources, e.g., dew computing. 
Ding et al. [25] proposed the DeepAK-IoT model for cyberattack detection in IoT as a 
combination of the LSTM and GRU algorithms developed in a centralized setting. It was tested 
on three datasets, including Edge-IIoTset, and showed higher performance than the basic 
models. However, due to its full dependence on centralized processing and raw data 
transmission to the central server, the framework would be ineffective in distributed settings 
with limited resources, such as dew computing. 
 Konatham et al. [19] introduced an integrated technique for anomaly detection in IIoT 
networks. They combined a convolutional neural network (CNN) and an LSTM architecture to 
simultaneously leverage spatial features and temporal features. It was trained with the entire 
data of Edge-IIoTset in a centralized setting and outperformed single-architecture models. 
However, dependence on full data transmission and high computational resource demand 
remained challenges for edge or dew settings with limited resources. Sadhwani et al. [26] 
proposed the SmartSentry framework to analyze cyber threats in the IIoT. It exploited 
centralized deep learning and Edge-IIoTset for advanced and accurate attack detection. In spite 
of its satisfactory performance, the framework was dependent on centralized processing and 
full raw data transmission to the central server and did not support distributed implementation 
or compatibility with limited-resource settings such as dew computing.  
Kilichev et al. [20] developed an integrated intrusion detection framework in IoT-based electric 
vehicle charging systems (EVCSs). It combined 1D-CNN, LSTM, and GRU in order to 
simultaneously analyze spatiotemporal features. The model was trained using Edge-IIoTset in 
a centralized setting and showed superb accuracy in detecting a broad range of attacks. 
However, dependence on centralized processing and full raw data transmission, along with 
extremely high computational costs, due to the simultaneous utilization of three deep 
architectures remained barriers to its implementation in lightweight and limited-resource 
settings, e.g., dew computing. However, the model showed excellent performance in terms of 
accuracy.  
Laiq et al. [27] developed a distributed denial-of-service (DDoS) attack detection system via 
classical ML algorithms with ensemble (stacking/voting/bagging/AdaBoost/XGBoost) designs 
in Edge-IIoTset and data balancing through the synthetic minority over-sampling technique 



(SMOTE). It was evaluated on Edge-IIoTset. Training was centralized, and remarkably high 
accuracy rates were reported. However, data heterogeneity, model lightweighting, and 
communication cost calculation constraints in dew setting were not addressed, and federated 
learning and evaluation on limited-resource hardware were not incorporated. Kumar et al. [28] 
proposed the PETDA2C-EC framework for privacy attack detection in Edge-IoT. The model 
included hybrid feature selection – e.g., random forest (RF), MI, and chi-square – and several 
classical ML classifiers and was tested on UNSW-NB15, CIC-IDS2017, ToN-IoT, and Edge-
IIoTset in a centralized setting, with an accuracy rate above 99% being reported. However, the 
scope of the study is limited to privacy attack detection in a centralized setup, and it does not 
consider federated learning, lightweight architectures, or communication cost analysis. 
Moreover, the model is not experimentally evaluated on fog or dew nodes.  
 
2.3.2. Federated learning 
Thamar et al. [29] proposed a federated learning–based system using the FedAvg aggregation 
algorithm for anomaly detection in industrial IoT edge networks. By avoiding raw data 
exchange among clients, the framework preserves privacy. The model was designed for binary 
classification, implemented with fully connected layers, and tested on the Edge-IIoTset dataset. 
However, it lacks a lightweight architecture or optimization for the dew layer, leaving its 
applicability to multi-class scenarios and resource-constrained environments limited. Rashid et 
al. [30] developed a federated learning-based approach using the FedAvg algorithm for 
intrusion detection in the IIoT. It used Edge-IIoTset with no raw data exchange and would 
protect data privacy. The model was a simple, fully connected architecture and lacked more 
advanced structures, e.g., CNN or LSTM. Moreover, aspects such as the communication 
overhead, localized resource consumption, and compatibility with lightweight and limited-
resource settings, e.g., dew computing, were not addressed. 
Popoola et al. [31] introduced a deep federated learning-based framework for intrusion 
detection in the edge settings of the IoT. It covered three different classification scenarios by 
utilizing Edge-IIoTset with no raw data exchange. The model was trained locally in edge nodes, 
and only the weights were transmitted to the central server to protect data privacy. This 
approach is considerable in terms of scenario diversity and relative compatibility with edge 
nodes; however, heterogeneous data management was not addressed, and no lightweight 
architecture or optimization module was included for limited-resource settings such as dew 
computing. As a result, despite its major contribution to leveraging federated learning for IoT 
security, further optimization is required in lightweight and distributed settings for practical 
application.  
 

Table 1. Summary of centralized and distributed learning models for intrusion detection in 
IIoT 

Ref. Year Model Learning Dataset Advantages Disadvantages 
(dew settings) 

[11] 2017 Bayesian 
inference 

Semi-
centralized 

Real-life data 
from two 
hospitals 

Robust under insider 
attacks, tested in real-
life medical settings 

Not generalizable 
to industrial 

settings, lack of 
deep learning 

[23] 2017 

Cloud security 
with traffic 
analysis and 

policy control 

No learning Conceptual/ 
simulation 

High reliability, 
advanced access 
control, security 
traffic analysis 

Stable connectivity 
demand, full data 
transmission, lack 

of localized 
processing 

[16] 2017 DBN+PSO-PNN Centralized KDD Cup 
1999 

Optimized 
combination of DBN 

with accurate 

Dependence on 
strong resources, 



Ref. Year Model Learning Dataset Advantages Disadvantages 
(dew settings) 

classification, reduced 
data dimensionality, 

high accuracy 

full data 
transmission 

[10] 2020 SAE 
(Autoencoder) Centralized NSL-KDD High accuracy 

High bandwidth 
consumption, 

distributed 
processing not 

supported, full data 
transmission to the 

dew server 

[18] 2020 DBN + improved 
PSO + SVM Centralized KDD Cup 

1999 

High accuracy, 
hyperparameter 
optimization, 
accelerated 

convergence, reduced 
error rate 

Distributed 
processing not 

supported, stable 
connectivity 

demand, full data 
transmission 

[7] 2021 DBN Centralized UNSW-NB15 

Practical 
implementation in 

dew settings, 
serviceable 

infrastructure design 

Full data 
transmission to the 

dew server, 
distributed 

processing not 
supported, high 

bandwidth 
consumption 

[24] 2022 LSTM + RNN + 
GRU Centralized 

Edge-IIoTset, 
ToN-IoT, 

UNSW-NB15 

Comparison of deep 
models, 

comprehensive data 
analysis, practical 

evaluation 

Distributed and 
lightweight 

processing not 
supported, full data 

transmission 

[22] 2023 HLSTM Federated ToN-IoT, NSL-
KDD 

Hierarchical 
aggregation, strong 

classification 
performance 

Dependence on 
strong resources, 
high bandwidth 

consumption 

[25] 2023 GRU + LSTM Centralized 
Edge-IIoTset, 

ToN-IoT, 
UNSW-NB15 

Particular deep model 
design, simultaneous 

leverage of LSTM and 
GRU, high accuracy 

Distributed 
processing not 

supported, 
dependence on 

strong resources, 
high bandwidth 

consumption, full 
data transmission 

[29] 2023 Unsupervised 
deep autoencoder Distributed Edge-IIoTset 

Privacy, no raw data 
transmission, non-

labeled design 

Evaluated solely in 
binary applications, 
lack of lightweight 

or optimized 
architecture 

[30] 2023 DNN Distributed Edge-IIoTset 

Privacy, no raw data 
transmission, 

heterogeneous data 
supported 

Lack of lightweight 
or optimized 
architecture, 

dependence on 
strong resources 

[19] 2024 LSTM + CNN Centralized Edge-IIoTset 

Combined advantages 
of CNNs and LSTM, 
enhanced accuracy in 

anomaly detection 

Distributed 
processing not 

supported, 
dependence on 

strong resources, 
full data 

transmission 



Ref. Year Model Learning Dataset Advantages Disadvantages 
(dew settings) 

[26] 2024 DNN Centralized Edge-IIoTset 

Comprehensive 
framework design, 
multidimensional 

threat analysis, 
satisfactory 

classification accuracy 

Distributed 
processing not 

supported, stable 
connectivity 

demand, full data 
transmission 

[20] 2024 CNN + LSTM + 
GRU Centralized Edge-IIoTset 

High accuracy in 
complex attack 

detection, integrated 
spatiotemporal 

architecture 

Lack of lightweight 
or optimized 
architecture, 

dependence on 
strong resources, 

full data 
transmission 

[31] 2024 DNN Distributed Edge-IIoTset 

Privacy, evaluation in 
three classification 

scenarios (2, 6, and 15 
classes) 

Lack of lightweight 
or optimized 
architecture, 

dependence on 
strong resources 

[27] 2025 ML – classical 
ensemble Centralized 

Edge-IIoTset 
(DDoS 

scenarios) 

Extremely high 
accuracy, regular 

ensemble comparison 
to basic models, 
balanced classes 

(SMOTE) 

Distributed 
processing not 

supported, 
dependence on 

strong resources, 
full data 

transmission, 
DDoS scenarios 

only 

[28] 2025 Classical ML + 
hybrid FS Centralized 

UNSW-NB15 ،
CIC-IDS2017, 

ToN-IoT,  
Edge-IIoTset 

High accuracy, novel 
method for feature 

selection 

Distributed 
processing not 

supported, 
dependence on 

strong resources, 
full data 

transmission, 
privacy attack 
scenarios only 

 
3. Problem Statement 
 
Dew computing is the closest layer to the data generation sources (sensors and actuators) and 
plays a key role in real-time processing and decreasing computational dependence on the 
Internet [3,4]. However, the intrinsic characteristics of the dew layer, including limited 
computational resources, low bandwidth, unstable connectivity, and major geographical 
distribution, expose dew computing to growing security threats [5,7]. In this respect, an 
intrusion detection system with three simultaneous key characteristics, i.e., lightweight 
architecture, lightweight computations, and distributed processing, remains to be developed to 
detect threats locally in real-time and prevent their propagation in multi-layer architectures 
without raw data transmission to the upper layers. In this study, lightweight architecture is 
assessed in terms of (i) the number of trainable parameters, (ii) the final model size, and (iii) 
the inference time, which together indicate whether the model can be practically deployed on 
dew-layer machines with constrained resources. In addition, lightweight computations refer to 
limiting both the local processing cost and the communication overhead in federated learning, 
characterized by (i) a bounded runtime and memory footprint during local updates and 
aggregation per communication round, and (ii) reduced model-update traffic per 



communication round, compared with centralized raw traffic data transfer and heavier 
federated designs. These criteria are later quantified and reported in the experimental section. 
A review of the literature shows that earlier works mostly did not effectively address such 
challenges in dew computing settings since: 

• They mainly focused on cloud-based systems, incompatible with limited resources and 
real-time requirements in dew and fog layers [32,33]. 

• They employed deep learning frameworks with heavy architectures requiring high 
computational power and incompatibility with dew nodes [34–36]. 

• In a number of federated approaches (e.g., Popoolar et al. [31]), the processing and 
communication overheads increased internal bandwidth consumption and latency, 
which is inconsistent with the functional philosophy of dew computing [37–39]. 

• Industrial data are imbalanced and non-numerical in practice and contain missing or 
redundant points, diminishing performance in conventional methods [40–43].  

The negligence of such challenges may turn the dew layer into a critical disadvantage in the 
security chain of the IoT as the compromise of dew nodes may propagate to upper layers, 
corrupt the basic data, and disturb high-level decision-making [10,44]. Moreover, the lack of 
an effective defense mechanism can facilitate major attacks, such as DDoS, malware, and 
injection attacks. Three approaches can be adopted in order to cope with these challenges: 

(1) Development of lightweight models that can be implemented in dew nodes in order to 
decrease computational resource consumption and maintain efficiency in limited-
resource settings [45–47]. 

(2) Utilization of smart distributed architectures to balance loads and boost resilience, 
focused on collaboration between the nodes and computational layers to improve 
scalability and reduce points of failure [33,48–50]. 

(3) Federated learning is a novel approach providing a combination of the two above ideas: 
lightweighting computations at the local level and node collaboration without a need 
for raw data exchange [30,31,51]. This prevents direct data transmission and, therefore, 
minimizes the risk of information leakage. However, many methods in the federated 
learning realm encounter challenges such as high communication overhead, delayed 
convergence, and limited compatibility with weaker nodes in low-resource settings 
[37,52,53]. As a result, it is essential to develop optimized and lightweight versions of 
federated learning for fog and dew layers. 

This study focuses on designing a lightweight federated intrusion detection system based on 
1D-CNNs to detect threats at the dew layer without transmitting raw data and maintain stable 
learning under variable communication conditions. The goal is to develop a fully dew-layer 
federated IDS framework that ensures the minimum communication overhead, a short training 
time, and high accuracy in real-life industrial settings. 
 
4. Contributions of the Proposed Model 
 
This study proposes a novel and lightweight framework for intrusion detection in dew 
computing settings focused on leveraging the capabilities of 1D-CNNS in extracting temporal 
and statistical patterns and the advantages of federated learning in minimizing raw data 
exchange and protecting data privacy. The main novelty of this study lies in devising a shallow 
and localized model based on a single 1D convolutional layer that is particularly tailored for 
limited resources and unstable connectivity. In contrast to earlier methods that transmitted data 
to the central server with major communication loads and security risks, the proposed 
framework shows higher compatibility with limited hardware as it includes merely model 
parameters and has a lightweight design. In addition, compared to methods based on heavy 
networks, such as deep belief networks (DBNs) or classical architectures, such as a multilayer 



perceptron (MLP), the proposed model leverages local filters and low-complexity 
convolutions, enabling the accurate extraction of attack patterns at low computational costs.  
The evaluation of three independent classification scenarios (binary, six-class, and fifteen-
class) based on Edge-IIoTset, which is structurally complex and homogeneous in terms of 
labeling, represents another advantage of the proposed framework [21]. The utilization of 
federated learning in these scenarios with the proposed model enables a comprehensive 
evaluation of the model under real-life conditions. Overall, the proposed method not only 
significantly decreases bandwidth consumption and eliminates raw data transmission but also 
meets the security requirements, resource limitations, and functional requirements in the dew 
computing layer. Furthermore, the proposed model maintains a lightweight design without 
compromising detection quality, and provides a robust balance between efficiency and 
effectiveness compared with prior heavier deep architectures on Edge-IIoTset, such as the 
CNN+LSTM model in [19] and the CNN+LSTM+GRU model in [20]. 
 
5. The Proposed Model: Technical Discussion 
 
Conventional ML training techniques are either dependent on the upper layers (e.g., fog or 
cloud) or are incompatible with dew layer limitations due to communication overheads and 
high latency, representing a major challenge. Therefore, it is crucial to develop a model that 
enables distributed and lightweight training performed fully in the dew layer without a 
dependence on the upper infrastructures. Thus, this study developed a framework based on the 
fully dew-layer federated learning architecture where both the aggregation server and all nodes 
are deployed in the dew layer. This structure is inspired by the single-super-hybrid-peer (SSHP) 
model in peer-to-peer (P2P) networks [4]. In this setup, a central node with effective super-
peer processing serves as the federated aggregation server, collects model parameters from the 
other nodes, and redistributes the updated version, while the other nodes (hybrid peers) 
implement localized data training (Fig. 1). 
The main advantage of this approach is that the training process can be fully performed in the 
dew layer or even offline with no dependence on the upper layers (fog or cloud). This 
substantially decreases latency, bandwidth consumption, and connection dependence. In this 
architecture, the dew servers typically include personal computers (PCs), workstations, or local 
organizational servers that are deployed in user sites and are equipped with sufficient 
processing, storage, and software resources to execute programs [4]. This study assumes that 
such servers have no energy consumption constraints and can perform ML computations with 
no concerns regarding power consumption. 
 



 
Fig. 1. Proposed fully dew-layer federated learning architecture 

 
To adapt to the hardware limitations of dew servers, a lightweight model was designed and 
evaluated based on a single 1D convolutional layer (Conv1D). The design process included 
data preprocessing, 1D-CNN architecture development, and implementation in centralized and 
federated settings. First, the model was executed in a centralized setting to provide a benchmark 
for performance evaluation so that the results could be compared to federated learning results 
and earlier works. This study mainly focused on deploying the model in the federated learning 
setting, in which an effective aggregation algorithm would be chosen for each classification 
scenario based on multi-objective optimization, i.e., F1-score (macro), communication cost, 
and convergence rate. In addition, fifteen independent scenarios were designed and simulated 
to comprehensively evaluate model performance and measure the sensitivity of the learning 
process to key factors; the number of nodes, participation rate, and the number of training 
rounds were altered to systematically evaluate the contribution of each parameter to the 
ultimate performance of the model. 
5.1. Centralized learning 
The training process was performed in a centralized setting. Fig. 2 depicts a flowchart of the 
phases, from data preparation to ultimate model training. 
 



 
 

Fig. 2. Flowchart of centralized learning with feature selection and hyperparameter tuning in 
1D-CNN 

 
I. Loading the DNN-Edge-IIoTset 
The DNN-Edge-IIoTset, including raw data of normal traffic and various attacks in the IIoT, 
was loaded [21]. It contains 1,909,671 records with 61 features and was selected in light of its 
comprehensive features, diverse attacks, and compatibility with federated learning scenarios 
and dew computing settings. Table 2 lists the main features in the DNN-Edge-IIoTset. 
 
 



Table 2. Main feature categories in the Edge-IIoTset 
Category Example Features Description 

Flow-based Flow Duration, Total Packets Basic traffic volume over each flow 
Time-based Inter-arrival Time Mean, Flow Start Time Temporal characteristics of packet 

streams 
Statistical Avg. Packet Size, Std. Dev. of Length Distribution and variability of packet 

sizes 
Protocol/Flags SYN Flag, ACK Flag, Window Size TCP/IP protocol behavior 

System/Behavioral Alert Count, Header Length System-level or behavioral indicators 
 
II. Data analysis 
The data quality and structure of the DNN-Edge-IIoTset were analyzed. The distribution of 
samples in various classes was evaluated to identify the balance between normal data and 
attacks. Then, the type of data in each column was investigated to separate the numerical 
columns from textual and class columns and determine whether they needed to be coded. The 
missing points, duplicate records, and constant columns were assessed to identify low-quality 
data. This directly copes with a challenge highlighted in the problem statement, i.e., imbalanced 
and noisy industrial data. Identifying and addressing such challenges before the processing 
stage helps avoid training the model based on incomplete or biased data and enhances the 
quality of input features in the next stages. 
III. Data encoding 
Once the data of the Edge-IIoTset had been analyzed, textual and non-categorical features were 
converted into a numerical format so that they could be processed by the model. Two common 
techniques, i.e., label encoding and one-hot encoding, were used for this purpose [54,55]. The 
former maps each textual value onto a unique numerical label in the range of 0 to x (x=number 
of features – 1). This is an effective approach for compositional data or data with limited values, 
even though a false order may be induced in nominal data. The latter, on the other hand, 
changes values into a binary vector with elements of 0 or 1, which is efficient for nominal 
protocols and fields since it does not induce false order dependence. 
This phase is crucial as industrial data often contains heterogeneous values, e.g., protocols, 
addresses, and textual identifiers, whose direct utilization would lead to errors or reduced 
model accuracy. The combined utilization of label and one-hot encoding techniques enables a 
uniform and significant data representation and handles the challenge of non-numerical and 
heterogeneous data in industrial settings [56]. 
IV. Data preprocessing 
The data were preprocessed to ensure input quality. Duplicate records were eliminated by 
detecting entirely identical rows while excluding missing points (NaNs). To detect constant 
columns or columns of similar patterns, the content of the columns was evaluated through MD5 
hash comparisons, excluding non-distinct columns. Furthermore, non-useful columns, e.g., IP 
addresses and pack schedules, were excluded since they had no analytical value for model 
training. This eliminated noise and incompatibility from the data and enabled more accurate 
model training in the next stages. 
V. Dataset split into training, validation, and testing subsets 
The dataset was split into a training subset (70%), a validation subset (10%), and a testing 
subset (20%) to ensure a proper balance between training efficiency, hyperparameter tuning, 
and final evaluation. This ratio follows the recommendation of Géron [56], which provides a 
well-established guideline for maintaining representativeness while preventing data leakage. 
The training data were used to learn model parameters, the validation data were employed to 
tune hyperparameters and prevent overfitting, and the testing data were utilized to evaluate the 
model’s generalization capability to unseen data. 



VI. Standardization 
The features were standardized using Standard Scaler to ensure a mean of 0 and a standard 
deviation of 1. Standardization was applied to merely the testing data, and the same scaling 
was implemented on the validation and testing data to prevent information leakage. The 
standardization phase is crucial to address the scale heterogeneity of industrial data since such 
data are obtained from various sources and sensors with various numerical ranges. Géron [56] 
held that feature scaling prevents biases toward variables of larger scales and maintains model 
accuracy and stability under operational conditions.  
VII. MI  
This study used the MI method for feature selection. MI measures the relative importance of 
each feature by evaluating its dependence on the output label [57]. In this study, MI was 
estimated using a nonparametric k-nearest neighbor entropy estimator based on neighbor 
distances, which is suitable for continuous variables and mixed discrete–continuous features 
[58,59]. The optimal number of features K was set through incremental search [60]. This 
process excludes insignificant features and reduces data dimensionality, tackling two key 
challenges in IIoT and dew computing: (1) limited computational and storage resources and 
(2) complexity of multidimensional data, which may lead to overfitting. As a result, the final 
model would be more efficient, faster, and more stable, and could be more effectively 
implemented in the dew layer. 
VIII: Hyperparameter tuning 
The hyperparameters were tuned using a grid search and five-fold cross-validation on the 
testing data. This would ensure the selection of optimal values for the model parameters and 
address the performance optimization challenge in the dew setting with computational 
limitations. The optimal tuning of hyperparameters boosts model accuracy and speed and 
decreases resource consumption, while cross-validation evaluates performance stability in 
various data scenarios and minimizes the risk of overfitting. 
IX. Lightweight 1D-CNN 
The model proposed in this study is a simplified and optimized one-dimensional convolutional 
neural network (1D-CNN) designed to achieve maximum efficiency under the resource 
constraints of dew computing environments. As shown in Fig. 3, the proposed architecture 
comprises a linear and efficient processing path, where the feature vector of each network flow 
(variables such as the pack exchange rate, flow length, pack size, number of ports, and protocol 
flags) with a length of L (number of features selected) and input channel C𝑖𝑖𝑖𝑖 = 1 is fed as a 1D 
sequence to the Conv1D layer. The input channel determines that each record is represented as 
solely a single-channel vector of features (unlike multidimensional data of multiple channels). 
The convolution operation is applied to the feature axis to identify local patterns and short-
range relationships between them. The network security data in the Edge-IIoTset, which have 
a vector and sequential format, are used in a numerical and structured form for learning. 
In contrast to earlier models in the literature with multiple convolutional layers with heavy 
combinations (such as a CNN+LSTM+GRU model [20]), the proposed architecture comprises 
a single Conv1D layer. The number of parameters in the Conv1D layer is calculated as: 
 

#𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶1𝐷𝐷 = 𝐹𝐹(𝐾𝐾 × 𝐶𝐶𝑖𝑖𝑖𝑖 + 1) (1) 
 
where F is the number of filters in the convolutional layer, K is the kernel size to cover the 
sequence of network flow features and identify local patterns, and 𝐶𝐶𝑖𝑖𝑖𝑖 is the number of input 
channels (i.e., the single-channel feature vector of each network flow in the Edge-IIoTset). 
Furthermore, the parameters of the fully connected (dense) layer are written as: 
 

#𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 =  𝐻𝐻𝑖𝑖𝑖𝑖 × 𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜 + 𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜 (2) 



 
where 𝐻𝐻𝑖𝑖𝑖𝑖 is the number of input neurons in the dense layer (the flattened output of the 
convolution layer), and 𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜 is the number of output neurons (i.e., the number of classes). 

 
Fig. 3. The Proposed 1D-CNN Architecture 

 
As a result, the total number of parameters in the proposed model is obtained as: 

#𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 =  #𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶1𝐷𝐷 + #𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 (3) 
This variable increases exponentially in multilayer models, requiring further memory and 
computational power. In contrast, a single Conv1D layer, a small hidden dense layer, and an 
output dense layer ensure that the total number of parameters remains in a limited range. This 
allows for implementing the model in low-resource dew servers and, simultaneously, helps use 
the memory more efficiently through sparse interactions and parameter sharing in the 
convolution layer [61]. 
Regarding time complexity, the main operation in Conv1D is of order 𝑂𝑂(𝐹𝐹 × 𝐾𝐾 × 𝐶𝐶𝑖𝑖𝑖𝑖 × 𝐿𝐿), 
where L denotes the length of the input feature vector (the number of features selected for each 
network flow). As the proposed architecture has a single-channel input (𝐶𝐶𝑖𝑖𝑖𝑖 = 1) and a short 
input feature vector (10-40, depending on the scenario), the computational cost of the Conv1D 
layer remains remarkably low. The complexity of the fully connected (dense) layer is of order 
𝑂𝑂(𝐻𝐻𝑖𝑖𝑖𝑖 × 𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜), leading to a small computational overhead due to the small number of classes 
and small flattened output. Therefore, the total time complexity of the model remains at the 
linear level, unlike deeper or combined models (CNN+LSTM/GRU) with exponentially 
growing time complexity.  
From a modeling capacity perspective, the Edge-IIoTset data mainly comprise short-term and 
repetitive local patterns, as with sudden increases in the packet rates in DDoS attacks or 
abnormal sequences of TCP flags in scanning attacks. However, some attack types such as 
MitM do not always manifest through strong short-term statistical deviations. MitM attacks 
typically involve traffic interception, modification, or replay, which may span longer 
interaction sequences and exhibit weaker local anomalies at the flow level. In the Edge-IIoTset, 
MitM samples are relatively limited and are mainly represented through aggregated flow 
features, which restricts the diversity of observable MitM behaviors. 



The Conv1D layer with small kernels can directly detect such local motifs without deeper 
layers to learn complex hierarchies. In addition, recent theoretical research has shown that 
CNNs can approximate a broad range of functions through an optimized width (number of 
filters) and kernel size, even at low depth [62]. Hence, despite its simplicity, the proposed 
architecture can effectively model complex attacks. The incorporation of MaxPooling1D and 
Dropout into the proposed architecture also plays a key role in performance improvement. 
MaxPooling1D enables more stable and robust representation by reducing the size of 
intermediate data and creating invariance to small shifts [63,64]. In this setup, the convolution 
axis corresponds to feature sequencing or packet sub-sequencing, and MaxPooling suppresses 
the noise of highly variable features and produces more robust representations by reducing 
local resolution and selecting dominant responses. 
Moreover, Dropout minimizes the overfitting risk and enhances generalizability by addressing 
excessive inter-neuron dependencies and decreasing the effective network capacity [63,65]. 
This is, in particular, essential for the imbalanced Edge-IIoTset, in which frequent classes, e.g., 
DDoS and Scanning, account for a major portion of the data, whereas classes such as Injection 
and Malware have a small number of samples. Deep architectures often tend to focus solely on 
dominant patterns and neglect minority classes. 
The proposed model, however, tackles this challenge by integrating the shallow Conv1D with 
MaxPooling and Dropout. MaxPooling highlights distinct features by compressing the 
intermediate data and mitigates the dependence on the number of samples, while Dropout 
drives the model to utilize a diverse combination of neurons and prevents an excessive focus 
on particular patterns of the most frequent classes. Thus, learning is not limited to the majority 
classes, and the model can focus on more general and discriminative features, leading to 
improved detection rates of rare attacks without a drop in the overall accuracy.  
Ultimately, the lightweight and low-depth architecture of the proposed model shortens the 
inference path and enables real-time detection. This is crucial in attack scenarios such as DDoS 
attacks since the model can detect attacks before the full saturation of the bandwidth or 
processor resources. In light of its flexible design, the proposed framework can also be 
extended from a binary setting (normal/attack) to multiclass settings (six or fifteen) only by 
altering the number of neurons within the output layer and activation function, without major 
alterations in the architecture.  
This study used the binary cross-entropy (BCE) cost function for the binary scenario and the 
sparse categorical cross-entropy (SCCE) cost function for the multiclass scenario. These cost 
functions are completely aligned with the nature of problems and the type of labels in the Edge-
IIoTset and improve model performance in several terms. In the binary scenario, the detection 
is aimed at realizing whether each sample belongs to the “attack” or “normal traffic” classes. 
The output of the final layer is a scalar in the range of [0, 1], which would be obtained from 
the sigmoid function and represent the membership likelihood of a given sample in the “attack” 
class. In such a case, the BCE cost function is the best alternative for optimization since it 
directly compares the predicted likelihood to the real value: 

𝐵𝐵𝐵𝐵𝐵𝐵(𝑦𝑦,𝑦𝑦�) =  −
1
𝑁𝑁
�[𝑦𝑦𝑖𝑖 log(𝑦𝑦�𝑖𝑖) + (1 − 𝑦𝑦𝑖𝑖) log(1 − 𝑦𝑦�𝑖𝑖)]
𝑁𝑁

𝑖𝑖=1

 (4) 

where N is the total number of samples in the Edge-IIoTset before preprocessing, 𝑦𝑦𝑖𝑖 is the real 
label of sample i, which is 1 for the attack class and 0 for the normal traffic class, and 𝑦𝑦�𝑖𝑖 is the 
predicted membership likelihood of sample i for the attack class.  
The logarithmic character of the BCE cost function is a key advantage that ensures a greater 
penalty for false predictions in the minority classes (e.g., rare attacks). This is particularly 
essential in the imbalanced Edge-IIoTset since the ratio of normal traffic samples to attack 



samples is significantly large, and the BCE cost function effectively prevents the negligence of 
minority classes in the learning process. 
In the multiclass scenarios (six and fifteen classes), the labels are stored as integers rather than 
one-hot vectors. Therefore, the SCCE cost function was employed to train the model: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑦𝑦,𝑦𝑦�) =  −  
1
𝑁𝑁
� log(𝑦𝑦�𝑖𝑖,𝑦𝑦𝑖𝑖)
𝑁𝑁

𝑖𝑖=1

 (5) 

where N is the total number of samples in the Edge-IIoTset before preprocessing, 𝑦𝑦𝑖𝑖 is the 
integer label of sample i, and 𝑦𝑦�𝑖𝑖,𝑦𝑦𝑖𝑖 is the predicted membership likelihood of integer class 𝑦𝑦𝑖𝑖, 
which is obtained from the output of the softmax function.  
Reduced memory consumption and accelerated training represent the first advantage of the 
SCCE cost function since it is no longer essential to convert labels into one-hot vectors. This 
is a key advantage in the fifteen-class scenario in the limited-source dew setting. The alignment 
of SCCE with the output of the softmax function and the generation of significant gradients for 
the minority classes represent the second advantage. This, along with the Dropout/Pooling, was 
helpful in improving the detection of rare classes in this study. The stability of SCCE in 
handling imbalanced data is the third advantage since false predictions for minority classes 
(e.g., Injection or Malware) are subject to a larger penalty, boosting the detection rate of rare 
attacks without a drop in the overall accuracy of the model in frequent classes. 
This study purposefully employed the adaptive moment estimation (ADAM) optimizer to train 
the 1D-CNN model. The ADAM algorithm provides a combination of the advantages of the 
Momentum and RMSProp models and calculates the learning rate of a parameter based on two 
exponential average estimations. The first- and second-order exponential averages are updated 
as: 
𝑚𝑚𝑡𝑡 =  𝛽𝛽1𝑚𝑚𝑡𝑡−1 + (1 − 𝛽𝛽1)𝑔𝑔𝑡𝑡 (6) 
𝑣𝑣𝑡𝑡 =  𝛽𝛽2𝑣𝑣𝑡𝑡−1 + (1 − 𝛽𝛽2)𝑔𝑔𝑡𝑡2 (7) 

where 𝑔𝑔𝑡𝑡 denotes the error in detecting network attacks with respect to the weights of the 
Conv1D layer and fully connected layer, 𝛽𝛽1 is the reduction factor of first-order exponential 
averaging, which is used to smoothen sharp gradient shifts in highly dynamic networks (e.g., 
DDoS attack-induced bursts), 𝛽𝛽2 is the second-order averaging factor, which ensures the 
stability and accuracy of weight updates by controlling the variation ranges of features with 
heterogeneous scales (e.g., high packet rates versus binary protocol flags), 𝜃𝜃 represents the 
weights of the Conv1D filters and dense neurons, which, in practice, represents attacks and 
normal traffic versus the network flow feature vector, 𝑚𝑚𝑡𝑡 is the first-order exponential gradient 
average, which serves as a stabilizer to update weights such that error variations in stable 
features (e.g., packet rate or repetitive protocol flags) are enhanced and the learning path of the 
model is facilitated, and 𝑣𝑣𝑡𝑡 is the second-order exponential gradient average and ensures that 
the learning rate remains higher for more stable features. 
These values are corrected through Eqs. (8) and (9) to eliminate the initial bias, and the weights 
are updated based on Eq. (10): 
𝑚𝑚�𝑡𝑡 =

𝑚𝑚𝑡𝑡

1 − 𝛽𝛽1𝑡𝑡
 (8) 

𝑣𝑣�𝑡𝑡 =
𝑣𝑣𝑡𝑡

1 − 𝛽𝛽2𝑡𝑡
 (9) 

𝜃𝜃𝑡𝑡+1 = 𝜃𝜃𝑡𝑡 − 𝛼𝛼
𝑚𝑚�𝑡𝑡

�𝑣𝑣�𝑡𝑡 + 𝜀𝜀
 (10) 

where  α is the learning rate and plays a crucial role in setting the convergence rate of the model 
in dew settings, while ϵ is a small quantity to avoid division by zero and particularly prevents 



computational errors when gradients become extremely small in minority data (e.g., rare 
Injection and Malware attacks). 
The Momentum component prevents extreme variations in the learning path based on 𝑚𝑚𝑡𝑡, 
while RMSProp regulates the learning rate of each parameter independently based on 𝑣𝑣𝑡𝑡. This 
optimizer is essential for the heterogeneous and multidimensional Edge-IIoTset data. The 
Edge-IIoTset comprises a variety of features, e.g., packet rates and protocol flags, and the 
ADAM algorithm takes more optimal steps for weight updating by automatically regulating 
the learning rate. Since the Edge-IIoTset is highly imbalanced, ADAM regulates the weights 
of minority classes (e.g., Injection and Malware attacks) more effectively in a shorter time 
without a drop in model accuracy for frequent classes. Thus, the model enjoys a balanced 
capability of learning for all classes. 
Furthermore, in dew computing settings with limited computational resources and training 
time, ADAM decreases energy consumption and shortens the computational time due to its 
high convergence rate and lower demand for training iterations (epochs). Exponential gradient 
averaging is another characteristic of the ADAM algorithm, which provides robustness to the 
noise and variability of attack patterns and prevents trapping in local minima. Most 
importantly, ADAM’s dynamic and automatic regulation of the learning rate eliminates the 
need for an extensive manual search to find the optimal value, which, in turn, accelerates and 
facilitates the training process. 
5.2. Federated learning 
Fig. 4 illustrates the flowchart of federated learning in the dew layer, organized into the client 
side (C) and server side (S). The former implements local processing and training on the data 
of each dew node, while the latter is responsible for coordination, aggregating updates, and 
managing learning cycles between nodes. 
The client-side federated learning process begins with Stage C(I), in which the Edge-IIoTset is 
split as independent and identically distributed (IID) local shards between dew nodes so that 
each node contains data of the same statistical distribution. Stage C(II) performs local 
preprocessing, including manual data coding through label encoding and one-hot encoding, 
eliminating constant columns, excluding duplicate records, and managing missing values 
(NaNs). Stage C(III) splits the local data of each node into a training subset (70%), a testing 
subset (20%), and a validation subset (10%) to ensure that the model can be generalized to new 
data [56]. Stage (IV) standardizes the data through Standard-Scaler by calculating the scaling 
parameters merely based on the training data before they are applied to the testing and 
validation data. Stage C(V) performs feature selection using the MI approach.  
Drawing on gradual searches, it applies the best number of features K, which is previously 
optimized for each problem in centralized learning, to each node. Stage C(VI) trains the 
lightweight 1D-CNN model for a given number of epochs (determined through Bayesian 
optimization based on each classification problem) on local data. Finally, in Stage C(VII), each 
node sends only updated gradients or weights to the aggregation server rather than transmitting 
raw data. 
The server side in federated learning is responsible for coordinating and aggregating the 
knowledge of local models and plays a key role in the effective and efficient convergence of 
the final model. The hyper-parameters of the local models are optimized through Bayesian 
optimization before beginning distributed training in order to ensure that each node starts 
training with the most effective configuration.  
This is also theoretically justifiable since negligence to optimize hyper-parameters at the local 
level in distributed architectures may lead to decelerated convergence, increased variance 
between local models, and reduced global model quality. The server-side stages of federated 
learning are described below. 
 



 
Fig. 4. Flowchart of federated learning in the dew layer, including local processing and 

training on the client side and aggregation and evaluation on the server side 
 
S(I) Initialization of the global model 
The global model (i.e., lightweight 1D-CNN) is generated and initialized in Stage S(I). The 
initial parameters of the model, including the weights and biases, are randomly initialized so 
that the learning process can begin without a bias toward specific data. The initialized global 
model is transferred to the nodes to begin local training and distributed aggregation.  
S(II): Selection of an aggregation algorithm for each task 
Stage S(II) is intended to select the optimal aggregation algorithm for each classification 
problem. Seven well-known aggregation algorithms in federated learning, i.e., FedAvg [66], 
FedAvgM [67], FedProx, FedAdam, FedOpt [68], FedYogi [69], and FedMedian [70], were 



executed under the same test conditions using the same local model (lightweight 1D-CNN). 
The configuration parameters, including the number of nodes (N), participation rate (C), the 
number of training rounds (R), and data settings, remained unchanged to perform evaluation 
based on differences in the aggregation. These seven aggregation algorithms were selected 
since they cover a wide range of approaches in federated learning, including FedAvg as a basic 
algorithm, FedAvgM as a momentum-based algorithm, FedMedian with robustness to outlier 
data, and FedYogi, FedOpt, and FedAdM as adaptive optimization approaches. Thus, the 
evaluation represents the most common aggregation algorithms in the literature.  
The final aggregation algorithm for each classification problem would be selected based on a 
multi-objective analysis that simultaneously met three major criteria: F1-score (macro), 
communication cost, and the number of rounds before convergence. As no algorithm was 
superior for all three criteria, decision-making was performed based on Pareto optimality; the 
algorithm with the most effective trade-off between F1-Macro, connectivity efficiency, and 
convergence rate, would be selected in each classification problem. Therefore, FedOpt was 
selected for the binary scenario, FedAvgM was utilized for the six-class scenario, and 
FedMedian was employed for the fifteen-class scenario. Overall, aggregation in federated 
learning is formulated as: 

𝑤𝑤𝑡𝑡+1 = �
𝑛𝑛𝑘𝑘
𝑛𝑛

𝐾𝐾

𝑘𝑘=1

𝑤𝑤𝑡𝑡
𝑘𝑘 (11) 

where K is the number of dew nodes participating in training round t, which is set based on the 
predefined participation rate in the simulations, 𝑤𝑤𝑡𝑡𝑘𝑘 denotes the weights of local model k trained 
on the specific split of the Edge-IIoTset in the same node, 𝑛𝑛𝑘𝑘 is the number of the training 
samples of node k, n is the total number of samples in all nodes in the same round, and 𝑤𝑤𝑡𝑡+1 
represents the weights of the global model after aggregation (lightweight 1D-CNN model 
designed for intrusion detection in this study). 
The aggregation algorithms differ from each other in calculating and updating 𝑤𝑤𝑡𝑡+1 and/or 
implementing constraints and specific optimizations in the process. The FedOpt algorithm 
(selected for the binary scenario) utilizes an adaptive optimizer on the server side that performs 
updating as: 

𝑤𝑤𝑡𝑡+1 = 𝑤𝑤𝑡𝑡 − 𝜂𝜂𝑠𝑠 ⋅
𝑚𝑚�𝑡𝑡

�𝑣𝑣�𝑡𝑡 + 𝜀𝜀
 (12) 

where 𝜂𝜂𝑠𝑠 is the server-side learning rate and controls the updating rate of the global model, 𝑚𝑚�𝑡𝑡 
is the first-order exponential gradient average that captures the dominant direction of weight 
variations during training rounds (𝑚𝑚�𝑡𝑡 is calculated using the local weight variations of the dew 
nodes with respect to the global model and represents the overall tendency of all nodes in 
learning the attack patterns in this study), 𝑣𝑣�𝑡𝑡 is the second-order exponential gradient average 
that controls the magnitude and variation of gradients (it ensures that the learning rate for noisy 
or variable features, such as ports or communication delays, reduces and remains larger for 
more stable features, such as the flow length or protocol flags), and 𝜀𝜀 is an extremely small 
constant added to the denominator to stabilize the training process (it particularly prevents an 
excessive learning rate increment and model divergence when some features have nearly-zero 
gradients).  
The FedOpt aggregation algorithm is advantageous as it ensures stable training and raises the 
convergence rate by combining these two components. This is important in the binary scenario 
of the Edge-IIoTset since the model should balance the highly imbalanced data (in which 
normal traffic dominates attack samples). In such a case, 𝑚𝑚�𝑡𝑡 prevents extreme bias variations 
in the updates, while 𝑣𝑣�𝑡𝑡 moderates the learning rate under noisy features and enables the 
proposed lightweight 1D-CNN model to converge more robustly in a shorter time [68].  



The FedAvgM algorithm (selected for the six-class scenario) is a variant of FedAvg that uses 
the server momentum. It updates the model weights as: 
Δ𝑡𝑡 = 𝛽𝛽Δ𝑡𝑡−1 + (𝑤𝑤𝑡𝑡 − 𝑤𝑤𝑡𝑡−1) 

(13) 
𝑤𝑤𝑡𝑡+1 = 𝑤𝑤𝑡𝑡 + Δ𝑡𝑡 

where 𝛽𝛽 is a coefficient determining the dependence of the current variations on the previous 
variations (it determines the extent to which the super-peer in the dew layer uses the shift 
direction of model weights in the previous weight; this is particularly vital in the Edge-IIoTset 
with a multiclass, imbalanced distribution since the momentum decreases heterogeneous data-
induced variations between dew nodes), Δ𝑡𝑡 is a linear combination of the previous and current 
weight variations (it reflects the averaged shift direction of 1D-CNN weights obtained from 
the training of dew nodes on different subsets of the Edge-IIoTset; this vector enables the global 
model to have a more robust and smoother path over time rather than following merely 
instantaneous node variations), Δ𝑡𝑡−1 is the accumulated weight variation in the previous round, 
which reflects the learning trend in round t-1 and serves as a short-term memory in weight 
updating, 𝑤𝑤𝑡𝑡 denotes the global model weights at the beginning of round t (the weights of the 
lightweight 1D-CNN model stored in the dew super-peer and can be readily aggregated with 
the node variations, and 𝑤𝑤𝑡𝑡−1 represents the global model weights at the beginning of round t-
1, which represents the previous version of 1D-CNN weights before aggregation in round t-
1.The weight updating path is not merely dependent on the instantaneous variations in this 
mechanism as the overall gradient orientation in the previous rounds is also incorporated. This 
approach is particularly essential for Edge-IIoTset multiclass scenarios since the data 
distribution between dew nodes is heterogeneous, and the global model weights may have 
sharp variations without the momentum. The FedAvgM algorithm mitigates such instability 
and enables more rapid and robust convergence for the 1D-CNN model in the dew setting [67]. 
The FedMedian algorithm (selected for the fifteen-class scenario) applies the coordinate-wise 
median rather than weight averaging for aggregation: 
𝑤𝑤𝑗𝑗
𝑡𝑡+1 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑤𝑤1,𝑗𝑗

𝑡𝑡 ,𝑤𝑤2,𝑗𝑗
𝑡𝑡 , … ,𝑤𝑤𝐾𝐾,𝑗𝑗

𝑡𝑡 ) (14) 
where j is the index of each 1D-CNN parameter (e.g., Conv1D filter weights or dense output 
neurons), 𝑤𝑤𝐾𝐾,𝑗𝑗

𝑡𝑡  is value j of the local model weight of node k in round t (obtained from local 
component training via the Edge-IIoTset in each dew node), and 𝑤𝑤𝑗𝑗𝑡𝑡+1 is value j of the global 
model weight after aggregation in the dew super-peer (which forms the updated version of the 
model for the next training round). 
While FedAvg considers the weighted averages, FedMedian selects the coordinate-wise 
median and is more robust to inconsistent nodes and/or outlier data. This is, in particular, 
important in the fifteen-class scenario since the Edge-IIoTset data have a heterogeneous 
distribution, and some classes comprise many fewer samples. Thus, FedMedian further 
stabilizes the learning path of the global model and prevents the excessive effects of nodes with 
non-representative or noisy data [70]. 
S(III): Broadcasting of the global model 
The initialized global model coupled with the optimal aggregation algorithm for the given 
scenario is sent to a set of nodes at the beginning of each training round. The number of these 
nodes is determined based on the participation rate C, with only a fraction of the total nodes 
being selected and activated in each round. This mechanism reduces communication costs and 
computational resource consumption in the dew layer and ensures the stability of the system 
under conditions where not all nodes are simultaneously available. Random node selection in 
each round maintains randomization during distributed data sampling and minimizes the 
overfitting risk in a fixed set of nodes, enabling the global model to have a more effective 
representation of the total data distribution. This approach also provides excellent flexibility in 



IIoT and dew computing settings, where a number of nodes may not be available due to 
resource limitations or a lack of connectivity.  
S(IV): Reception of the client updates 
Once each local training round in the selected nodes has been completed, model updates 
(including weights or gradients) are transmitted to the server. The server integrates these 
updates based on the aggregation algorithm (FedOpt, FedAvgM, or FedMedian) to generate a 
new version of the global model. This ensures that the knowledge extracted from the local data 
of each node is incorporated into the global model, and the effects of inconsistent or noisy data 
are minimized. This phase is essential in the IIoT and dew computing settings as data are highly 
heterogeneous and decentralized, and the quality of updates transmitted by nodes may vary due 
to limited resources or unstable connectivity.  
S(V): Repetition for R rounds 
The federated learning cycle, including the transmission of the global model to the nodes, local 
training, and receiving and aggregating updates, is iteratively executed for a certain number of 
rounds until the convergence criterion is met. This study would discontinue the training process 
if no significant improvement in model performance was observed over a number of 
consecutive rounds based on error metrics. This prevents ineffective training rounds and saves 
computational and communication resources within limited-resource settings, such as dew 
computing.  
S(VI): Evaluation of the global model 
Once aggregation and convergence have been completed, the trained global model is finally 
evaluated on the global testing dataset, which has not been used in the training process. The 
evaluation data are stored independently in order to ensure that the results reflect the 
generalizability of the global model to new and unseen data.  
S(VII): Execution of simulations 
Several simulation configurations are implemented to systematically evaluate the effects of 
each parameter on the federated learning process to identify optimal configurations and 
enhance model performance. Three key parameters are systematically altered during the 
federated learning process [66,71,72]: 

(I) Number of nodes (N): It determines the number of local nodes that participate in 
the training process simultaneously. This parameter reflects the network scale and 
data heterogeneity level [66,72]. 

(II) Participation rate (C): It is the ratio of nodes selected in each round to the total nodes 
and simulates the unavailability or temporal disconnection of some nodes. This 
parameter affects data diversity and convergence rate [66,71]. 

(III) Number of training rounds (R): It determines the number of model uplinks and 
downlinks between the nodes and central server and directly relates to resource 
limitations in the dew layer [71,72].  

A total of fifteen simulation configurations with different conditions were devised to assess the 
relative effects of each parameter both independently and in interaction with the other 
parameters. The results of these simulations would be compared based on the evaluation 
criteria (i.e., F1-macro, communication cost, and convergence rate), extracting optimization 
policies to select the optimal configuration for each scenario (Section 6). 
This study would select two different approaches to hyperparameter optimization within 
centralized learning and federated learning settings based on both theoretical and practical 
aspects. In centralized learning settings, data are stored in an integrated form, and model 
execution solely includes local training. Hence, the computational time and cost of testing 
various combinations of hyperparameters are lower, and grid search can be performed. This 
approach completely evaluates a discrete space of possible values and ensures that the global 
optimum is identified in this space. The time complexity of this grid search is written as: 



𝑂𝑂(�𝑛𝑛𝑖𝑖

𝑘𝑘

𝑖𝑖=1

) (15) 

where 𝑛𝑛𝑖𝑖 is the number of tested values for hyperparameter i, whereas k is the number of 
hyperparameters. This cost is acceptable when 𝑛𝑛𝑖𝑖 is small and the data are centralized. In 
federated learning, on the other hand, data are distributed between several nodes, and the 
evaluation of a configuration includes multiple stages of model transmission and reception 
between nodes and the server. The evaluation cost in such settings is written as: 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶evaluation (𝑓𝑓) = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  (16) 

The total cost of an evaluation comprises a computational cost and a communication cost. In 
federated learning, the communication cost of repetitive transmissions of model weights 
between nodes and the server is significantly dominant since it grows proportional to the 
number of model parameters × the number of participating nodes × the number of training 
rounds, while the computational cost of each node is limited to local processing on a subset of 
data. This difference between the two cost components is even greater in the dew layer, in 
which the bandwidth and network stability are limited. 
Research has shown that the communication overhead is the primary bottleneck in federated 
learning [53]. To address this challenge, this study employed Bayesian optimization in the 
federated learning process by implementing the structured Parzen estimator (TPE) in the 
Optuna framework. While Gaussian process-based methods utilize acquisition functions, e.g., 
expected improvement (EI) or upper confidence bound (UCB), the TPE algorithm guides the 
search by directly modeling the conditional probability distribution of the objective function. 
In this method, two independent conditional distributions are defined: 
𝑙𝑙(𝑥𝑥) = 𝑝𝑝(𝑥𝑥|𝑦𝑦 < 𝑦𝑦∗) (17) 
𝑔𝑔(𝑥𝑥) = 𝑝𝑝(𝑥𝑥|𝑦𝑦 ≥ 𝑦𝑦∗) (18) 

where x is the hyperparameter vector (e.g., learning rate, number of filters, or kernel size in the 
proposed 1D-CNN), y is the objective function value, which is assumed to correspond to model 
performance indices in federated learning (validation dataset accuracy), and 𝑦𝑦∗ is a 
performance threshold (set as a quantile of the previous results).  
The objective is to maximize the 𝑙𝑙(𝑥𝑥)/g(x) ratio in order to select new values of x with a higher 
likelihood of corresponding to the zone or higher performance. The significant drop in the 
number of model executions and the focus on promising zones in the search space are major 
advantages of this approach in federated learning. This remarkably saves time, decreases the 
communication cost, and improves efficiency in hyperparameter selection, ensuring model 
convergence under limited-resource conditions.  
 
6. Simulation Results and Technical Discussion 
 
This section discusses the results of the proposed model in the centralized learning and 
federated learning settings. The hardware and software of the simulation system, statistical data 
distribution, performance evaluation criteria (accuracy, precision, recall, and F1-score), 
inference time, communication cost, and the number of convergence rounds are discussed. 
Finally, the hyperparameter configuration is described, followed by a discussion of the 
qualitative and quantitative results of each scenario. 
6.1. Hardware and software configuration of the simulation system 
The simulations were performed under a fixed set of controlled settings using an Asus ROG 
Zephyrus G14 system with 32 GB of RAM, an NVIDIA GeForce RTX 2060 Max-Q GPU (6 
GB), and an estimated compute throughput of 7.5 TFLOPS. These hardware and software 



details are reported to support reproducibility and facilitate independent verification. Table 3 
summarizes the software configuration. 
 

Table 3. Software configuration in the simulations 
Library, Tool, or 

Programming 
Language 

Python TensorFlow Flower 
(Flwr) Matplotlib Scikit-

Learn Numpy Pandas Optuna 

Version 3.10 2.19.0 1.18.0 3.9.4 1.6.1 2.1.3 2.2.3 4.4.0 
 
6.2. Statistical data distribution 
Three classification scenarios, including binary, six-class, and fifteen-class, were analyzed. 
The data were split using a stratified split technique to maintain the same ratios of samples in 
the classes within the training, validation, and test subsets. Table 4 shows the statistical 
distribution of the data. 
 
Table 4. Distribution of classes and sub-classes in the Edge-IIoTset after data preprocessing 

Category Subcategory Class Records Percentages (%) 
Normal Normal Normal 1399624 72.65% 

Attack 

DDoS 

DDoS_UDP 121567 6.31% 
DDoS_ICMP 67939 3.53% 
DDoS_TCP 50062 2.60% 

DDoS_HTTP 48544 2.52% 

Injection 
SQL_Injection 50826 2.64% 

Uploading 36957 1.92% 
XSS 15068 0.78% 

Scanning 
Vulnerability_Scanner 50026 2.60% 

Port_Scanning 19977 1.04% 
Fingerprinting 853 0.04% 

Malware 
Password 49933 2.59% 
Backdoor 24026 1.25% 

Ransomware 9689 0.50% 
MITM MITM 358 0.02% 

Total 1945449 100% 
 
6.3. Evaluation criteria 
Macro and weighted accuracy, precision, recall, and F1-score were employed to evaluate model 
performance in both the centralized and federated learning settings. The number of 
convergence rounds, communication cost, and inference time were also incorporated as 
additional criteria for federated learning. 
6.3.1. Accuracy 
Accuracy is defined as the ratio of true predictions to total samples and serves as a measure of 
model efficiency in classification: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
𝑇𝑇𝑇𝑇 +  𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 +  𝑇𝑇𝑇𝑇 +  𝐹𝐹𝐹𝐹 +  𝐹𝐹𝐹𝐹
 (19) 

where TP, TN, FP, and FN denote true positives, true negatives, false positives, and false 
negatives, respectively. In multiclass systems, accuracy is formulated as the average true 
predictions in all classes: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =  
1
𝑁𝑁
�1 {𝑦𝑦�𝑖𝑖 = 𝑦𝑦𝑖𝑖}
𝑁𝑁

𝑖𝑖=1

 (20) 

where N is the total number of samples, 𝑦𝑦𝑖𝑖 is the real label, 𝑦𝑦�𝑖𝑖 is the predicted label, and the 
characteristic function 1 {𝑦𝑦�𝑖𝑖 = 𝑦𝑦𝑖𝑖} is 1 for correct predictions and 0 for incorrect ones. 



6.3.2. Precision 
Precision is the ratio of true positives to the total positives: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 +  𝐹𝐹𝐹𝐹
 (21) 

In multiclass scenarios, precision is calculated using two approaches: 
• Macro-precision: It is the non-weighted average precision of all classes given by: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝐶𝐶
�

𝑇𝑇𝑃𝑃𝑐𝑐
𝑇𝑇𝑃𝑃𝑐𝑐 + 𝐹𝐹𝑃𝑃𝑐𝑐

𝐶𝐶

𝑐𝑐=1

 (22) 

where C is the total number of classes, TPc is the number of true positives in class c, 
and FPc is the number of false positives in class c. 

• Weighted precision: It is the weighted average of the precision scores of the classes 
based on the relative frequency of each class: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡𝑡𝑡𝑡𝑡  =  �
𝑛𝑛𝑐𝑐
𝑁𝑁

𝐶𝐶

𝑐𝑐=1

∙
𝑇𝑇𝑃𝑃𝑐𝑐

(𝑇𝑇𝑃𝑃𝑐𝑐 + 𝐹𝐹𝑃𝑃𝑐𝑐)
 (23) 

where 𝑛𝑛𝑐𝑐 is the number of real samples in class c, while N denotes the total number of 
samples. 

6.3.3. Recall 
Recall measures the efficiency of a model in detecting true positives and is written as: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 
 (24) 

In multiclass scenarios, recall is calculated through two approaches: 
• Macro-recall: It is the non-weighted average recall score of all classes: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  =  
1
𝐶𝐶
�

𝑇𝑇𝑃𝑃𝑐𝑐
𝑇𝑇𝑃𝑃𝑐𝑐 + 𝐹𝐹𝑁𝑁𝑐𝑐

𝐶𝐶

𝑐𝑐=1

 (25) 

where FNc denotes the number of false negatives in class c. 
• Weighted recall: It is the weighted average recall score of the classes based on the 

relative frequency of each class: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡𝑡𝑡 =  �
𝑛𝑛𝑐𝑐
𝑁𝑁
∙

𝑇𝑇𝑃𝑃𝑐𝑐
𝑇𝑇𝑃𝑃𝑐𝑐 + 𝐹𝐹𝑁𝑁𝑐𝑐

 
𝐶𝐶

𝑐𝑐=1

 (26) 

6.3.4. F1-score 
The F1-score is a combined criterion defined as the coordinated average of precision and recall 
and evaluates the balanced performance of a model in producing true positives and avoiding 
false positives: 

𝐹𝐹1 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  2 ×
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ×  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 +  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

 (27) 

In multiclass scenarios, the F1-score is calculated through two approaches: 
• Macro-F1: It is the non-weighted F1-score of all classes: 

𝐹𝐹1𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  =  
1
𝐶𝐶
�

2 ∙ 𝑃𝑃𝑐𝑐 ∙ 𝑅𝑅𝑐𝑐
𝑃𝑃𝑐𝑐 + 𝑅𝑅𝑐𝑐

𝐶𝐶

𝑐𝑐=1

 (28) 

where 𝑃𝑃𝑐𝑐 is the precision of class c, while Rc is the recall of class c. 
• Weighted F1: It is the weighted average F1-score based on the relative frequency of 

each class: 



𝐹𝐹1𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡𝑡𝑡  =  �
𝑛𝑛𝑐𝑐
𝑁𝑁
∙

2 ∙ 𝑃𝑃𝑐𝑐 ∙ 𝑅𝑅𝑐𝑐
𝑃𝑃𝑐𝑐 + 𝑅𝑅𝑐𝑐

𝐶𝐶

𝑐𝑐=1

 (29) 

 
6.3.5. Specific evaluation criteria in federated learning 
Three additional evaluation criteria were incorporated for federated learning, including: 

(1) Number of convergence rounds: It denotes the number of rounds required to enable the 
central model to converge in terms of the target criterion (i.e., loss). This study defined 
loss function reduction as the stopping criterion for model training; the training process 
would be discontinued once no improvement occurred in the loss function over a 
sequence as large as half the total number of predefined rounds (for example, nine 
rounds in eighteen-round training), with the corresponding round being recognized as 
the convergence round. It should be noted that a stricter stopping criterion was assumed 
in the binary scenario due to the relative simplicity of the system and higher 
convergence rate; i.e., training would be discontinued once the loss function did not 
improve over five consecutive rounds. 

(2) Communication cost: It indicates the total size of data exchanged between the nodes 
and the central server during the entire federated learning process and is measured in 
MB. In each training round, each participating node transmits its local model to the 
server and receives the aggregated model from it. Thus, the communication cost is a 
function of the model size, the number of participating nodes in each round, and the 
total number of training rounds: 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (𝑀𝑀𝑀𝑀) = 𝑅𝑅 × (𝑁𝑁 × 𝐶𝐶) × 2 × 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (𝑀𝑀𝑀𝑀) (30) 

where N is the total number of nodes, C is the participation rate of nodes in each round, 
and R is the number of training rounds. A factor of 2 represents uplink+downlink in 
each round.  

(3) Inference time: It is the average time required to predict each sample in the testing 
dataset and is calculated based on well-known standards, e.g., MLPerf [73]: 
 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 =  
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
 (31) 

 
6.4. Hyperparameter configuration in centralized and federated learning 
This study tuned hyperparameters through different approaches in the centralized and federated 
learning settings. The grid search was employed in centralized learning to find an optimal 
combination of hyperparameters (Table 5). Due to the distributed character of data and limited 
resources in federated learning, Bayesian optimization and the TPE algorithm were 
implemented (Table 6).  
In both centralized and federated learning settings, feature selection was performed using the 
MI technique based on the optimal number of features K through the incremental search. Table 
7 lists the optimal parameters for each classification scenario.   
 

Table 5. Hyperparameter configuration in classification scenarios for centralized learning 
Classification 

Task Filters Kernel Size Dense Units Dropout Rate Learning Rate Batch Size Epoch 
Binary 16 3 32 0.2 0.001 16 6 
6-class 128 3 32 0.2 0.0005 64 50 

15-class 128 7 128 0.2 0.0001 32 50 
 
 



Table 6. Hyperparameter configuration in classification scenarios for federated learning 
Classification 

Task Filters Kernel 
Size 

Dense 
Units 

Dropout 
Rate Learning Rate Batch 

Size 
Local 
Epoch 

Binary 16 3 32 0.2 0.001 16 6 
6-class 128 2 32 0.3 0.0005 64 10 
15-class 64 2 32 0.2 0.0005 64 10 

 
Table 7. Number of selected features in classification scenarios based on MI 

Classification Task 2-class 6-class 15-class 
Number of Selected Features (K) 10 40 30 

 
6.5. Centralized learning  
The performance of the proposed model was evaluated under the framework of centralized 
learning to enable intricate, reliable comparisons. The first goal was to offer a quantitative 
baseline for comparison to federated settings and measure the potential drop in accuracy under 
distributed conditions so that model efficiency could be assessed, along with the security and 
data privacy advantages of federated learning. The second goal was to compare the 
performance of the proposed model to well-known methods in the literature in the centralized 
setting to demonstrate the superior or comparative performance of the proposed model in terms 
of accuracy, computational efficiency, and learning stability. As a result, three classification 
scenarios, i.e., binary, six-class, and fifteen-class, were analyzed, reporting the evaluation 
criteria for each scenario. Table 8 summarizes the performance of the proposed model in the 
three scenarios, suggesting high accuracy and optimal training and testing times with limited 
epochs.  
 

Table 8. Model performance in three classification scenarios in centralized learning 
Performance Metrics 2-class 6-class 15-class 

Test Loss 0.0000 0.0532 0.0625 
Test Accuracy 100 97.49 97.01 

Epoch 5 50 50 
Training Time (s) 793.35 4663.87 8935.29 
Testing Time (s) 29.36 10.38 21.85 

 
6.5.1. Binary scenario 
The proposed model was found to effectively detect all samples in the binary scenario, yielding 
an accuracy, precision, recall, and F1-score of 100% for both the “attack” and “non-traffic” 
classes (Table 9). 
 

Table 9. Model performance under the binary scenario in centralized learning 
 Precision (%) Recall (%) F1-Score (%) Support 

No Intrusion 100 100 100 280115 
Intrusion 100 100 100 108975 
Accuracy  100 389090 

Macro Avg 100 100 100 389090 
Weighted Avg 100 100 100 389090 

 
6.5.2. Six-class scenario 
The proposed model had an accuracy score of 97.49% in the six-class scenario. According to 
Table 10, the precision, recall, and F1-score were maximized to 100% in the normal and MITM 
classes. The model also showed excellent performance in the DDoS and Scanning classes, 
yielding evaluation criteria above 93%. Despite the relatively low precision score (71.90%), 
the model effectively detected the Injection class, with a recall score of 96.04%. The Malware 



class was the largest challenge; despite a high precision score of 98.64%, the model showed a 
low recall score (60.12%) and a decreased F1-score. 
 

Table 10. Model performance under the six-class scenario in centralized learning 
 Precision (%) Recall (%) F1-Score (%) Support 

Normal 100 100 100 280115 
DDoS 98.03 97.60 97.81 57299 

Scanning 94.74 93.73 94.23 14141 
Injection 71.90 96.04 82.23 20702 
MITM 100 100 100 69 

Malware 98.64 60.12 74.70 16764 
Accuracy  97.49 389090 

Macro Avg 93.88 91.25 91.50 389090 
Weighted Avg 97.96 97.49 97.43 389090 

 
6.5.3. Fifteen-class scenario 
The proposed model had an overall accuracy score of 97.01 in the fifteen-class scenario. As 
shown in Table 11, the model was effective for the Normal, MITM, DDoS-UDP, and DDoS-
ICMP classes, with a precision, recall, and F1-score of 100%. The evaluation criteria were 
higher than 92% for many other classes, including Ransomware, DDoS-TCP, Vulnerability-
scanner, and Backdoor. On the other hand, the precision score was relatively low for the 
Password, SQL Injection, and Uploading classes, even though the model showed acceptable 
recall scores, suggesting that the proposed model can detect the real-life instances of such 
attacks. Password and SQL Injection were the most challenging classes, as the F1-score was 
calculated to be 62.61% and 69.49%, respectively. While the proposed model demonstrates 
stable performance across all attack classes, it is important to note the inherent complexity of 
certain intrusion types. Specifically, MitM attacks in the Edge-IIoTset are predominantly 
represented by short-term flow-level features. This data limitation constrains the model's ability 
to learn the diverse, long-term sequential dependencies typically associated with real-world 
MitM behaviors, thus directing the lightweight 1D-CNN to capture local statistical anomalies 
rather than deep temporal patterns.  
 

Table 11. Model performance under the fifteen-class scenario in centralized learning 
 Precision (%) Recall (%) F1-Score (%) Support 

Normal 100 100 100 280115 
MITM 100 100 100 69 

Uploading 89.92 68.66 77.87 7588 
Ransomware 99.95 91.55 95.56 2012 

SQL_injection 69.41 69.56 69.49 10041 
DDoS_HTTP 94.11 89.79 91.90 9620 
DDoS_TCP 98.16 94.06 96.07 10052 

Password 57.85 68.23 62.61 9869 
Port_Scanning 86.84 99.40 92.70 3985 

Vulnerability_Scanner 98.70 92.66 95.58 9985 
Backdoor 97.62 98.30 97.96 4883 

XSS 64.95 87.18 74.44 3073 
Fingerprinting 77.06 76.61 76.83 171 
DDoS_UDP 99.90 100 99.95 24316 
DDoS_ICMP 99.88 99.54 99.71 13311 

Accuracy  97.01 389090 
Macro Avg 88.96 89.04 88.71 389090 

Weighted Avg 97.26 97.01 97.07 389090 



It should be noted that high F1-scores may coexist with a non-zero error rate, particularly in 
imbalanced multiclass datasets such as the Edge-IIoTset. While the error rate is a sample-level 
metric directly derived from overall accuracy, precision, recall, and F1-score are class-level 
metrics that are computed independently for each class and then aggregated using macro or 
weighted averaging. In such datasets, misclassifications in minority classes may increase the 
overall error rate, even when dominant classes achieve near-perfect precision and recall. 
Therefore, F1-scores close to 100% do not necessarily imply a zero-error rate, and the reported 
evaluation metrics remain consistent and complementary. Accordingly, both macro-averaged 
and weighted-average metrics are reported in this study to provide a balanced evaluation across 
majority and minority classes. 
 
6.5.4. Proposed model versus earlier methods in centralized learning 
Table 12 compares the proposed model to a set of recent studies that utilized various deep 
learning architectures for intrusion detection on the Edge-IIoTset based on the accuracy, 
precision, recall, F1-score criteria, along with the training time and testing time in binary, six-
class, and fifteen-class scenarios. The architectural and methodological explanations for the 
superiority of the proposed model over earlier methods are discussed below. 
The major improvements in the accuracy, precision, recall, and F1-score of the proposed 
framework compared to fully connected architectures (DNN) [21,26] stem from a technical 
chain of architectural mechanisms. First, the Conv1D layer implements convolution on the 
feature vector, helping detect local inter-feature dependencies. This leads to the extraction of 
significant spatial patterns, while fully connected architectures transfer all features only as a 
flat vector to the next layer, and, therefore, local correlations disappear. Hence, DNNs cannot 
represent such dependencies. 
Second, the MaxPooling1D layer leads to decreased dimensionality and helps focus on major 
patterns, attenuating data noise and moderating the computational load. Third, Dropout 
randomly excludes a fraction of neurons during the training phase and, therefore, avoids 
overfitting to the training data. As a result, the model not only shows improved accuracy on 
the seen data but can also be generalized to unseen data. In light of this chain, the proposed 
model yielded reproducible results, even under the six- and fifteen-class scenarios in which the 
data were more dispersed and imbalanced. On the other hand, the DNNs showed substantially 
lower accuracy and F1-score as they lacked such mechanisms. 
In the RNN models, e.g., GRU and LSTM [19], each computational step is dependent on the 
output of the previous step due to their sequential processing character. This sequential 
dependence prevents parallel training and, therefore, substantially increases the training time 
(over 100% longer training times relative to the proposed model). Furthermore, the data of 
Edge-IIoTset do not contain long-term temporal dependencies, and, consequently, the major 
advantage of RNN models in capturing long-range dependencies is not triggered. As a result, 
an increased training time would not improve the performance criteria. 
On the other hand, the proposed model performs parallel training on the entire feature sequence 
by leveraging Conv1D and simultaneously captures local patterns and key inter-feature 
dependencies. This chain remarkably decreases the computational cost and shortens the 
training and inference times. In addition, complex integrated models, e.g., CNN+LSTM+GRU 
[20], have training times over 200% longer than the proposed model, raise the overfitting risk, 
and require stronger hardware resources due to their large depth and multiplicity of parameters. 
In contrast, the proposed lightweight architecture, with tailored layers and effectively 
optimized hyperparameters, maintained competitive accuracy and F1-score, with substantially 
shorter training and testing times. 
The use of complex feature extraction blocks has a generic design in the InceptionTime [24] 
and DeepAK-IoT [25] architectures, without compatibility with the imbalanced and noisy data 



of the Edge-IIoTset. Despite their high learning capacities, such blocks cannot generate 
detailed decision boundaries effectively in multiclass scenarios, particularly in the presence of 
feature overlaps, and these architectures showed inferior performance to the proposed model. 
In contrast, through the optimized number of filters and kernel size based on MI maximization, 
the proposed model focused on extracting the most discriminative features. In addition, the use 
of an optimized number of layers prevented unnecessary complexity and maintained the 
efficiency of the model in separating the classes. This chain of design enabled a more accurate 
generation of decision boundaries within classes with overlapping features, leading to 
significant improvements in the evaluation criteria compared to earlier architectures under 
multiclass scenarios.  



Table 12. Proposed model versus earlier works on the Edge-IIoTset in centralized learning 

Model 

Accuracy (%) Precision (%) 
(Macro/Weighted) 

Recall (%) 
(Macro/Weighted) 

F1-Score (%) 
(Macro/Weighted) 

Train 
Time (s) 

Test 
Time (s) 

2-
class 

6-
class 

15-
class 

2-
class 6-class 15-class 2-

class 6-class 15-class 2-
class 6-class 15-class 2-class 6-class 15-class 2-

class 
6-

class 
15-

class 

DNN [21] 99.99 96.01 94.67 NR NR NR NR NR NR NR NR NR NR NR NR NR NR NR 

Inception Time [24] - - 94.94 - - NR/98.3 - - NR/92.4 - - NR/95.3 - - NR - - NR 

DeepAK-IoT [25] - - 94.96 - - NR/95.40 - - NR - - NR/94.72 - - NR - - NR 

Unsupervised Deep 
Auto-Encoder [29] 99.7 - - 99.9 - - 100 - - 99.9 - - NR - - NR - - 

CNN [19] - - 94.83 - - NA/98.38 - - NR/92.30 - - NR/95.19 - - 1080 - - NR 

GRU [19] - - 93.98 - - NR/97.02 - - NR/91.76 - - NR/94.28 - - 2100 - - NR 

GRU + CNN [19] - - 94.94 - - NR/98.49 - - NR/92.28 - - NR/95.23 - - 5820 - - NR 

LSTM [19] - - 93.93 - - NR/97.45 - - NR/91.28 - - NR/94.21 - - 2160 - - NR 

DNN [26] 100 96.78 94.90 100 NR/96.82 NR/95.33 100 NR/96.16 NR/94.90 100 NR/95.97 NR/94.62 715.36 373.88 367.58 20.05 18.11 27.99 

CNN + LSTM + GRU 
[20] 100 97.44 96.90 100 93/98 90/97 100 91/97 85/97 100 91/97 86/97 1885.46 14803.63 14719.47 42.53 42.20 40.65 

DNN [31] 100 98.83 99.39 100 91.58/NR 81.46/NR 100 85.27/NR 75.90/NR 100 86.68/NR 77.67/NR 384.82 363.55 388.24 8.10 6.68 6.74 

The Proposed Model 100 97.49 97.01 100 93.88/97.96 88.96/97.26 100 91.25/97.49 89.04/97.01 100 91.50/97.43 88.71/97.07 793.35 4663.87 8935.29 29.36 10.38 21.85 

 
 
This is a key operational advantage in dew computing settings with limited computational resources and demand for real-time responsiveness, unlike a major 
fraction of heavy models in the literature. 



6.6. Federated learning  
The performance of the proposed model in federated learning under binary, six-class, and 
fifteen-class scenarios is reported in this section. The main goal is to evaluate the efficiency of 
the model in distributed settings without raw data transmission to the central server, and not 
only accuracy but also the communication cost and simulation time are important. For each 
scenario, a multi-objective analysis is performed based on the Pareto technique under three key 
criteria: the maximization of F1-score (macro) and the minimization of the communication cost 
and simulation time. Then, the Pearson correlation analysis (p<0.05) is performed on a set of 
criteria, including accuracy, precision (macro), recall (macro), F1-score (macro), simulation 
time, communication cost, and number of convergence rounds, to evaluate the inter-index 
correlations.  
It should be mentioned that the IID data were used for the nodes in the simulations so that the 
effects of system parameters (i.e., number of nodes, participation rate, and number of rounds) 
could be clearly studied. However, the Edge-IIoTset is intrinsically heterogeneous and 
imbalanced and contains protocols, various network features, and attack classes with highly 
different frequencies. Therefore, the results reported for the three scenarios can demonstrate 
the efficiency of the proposed model in coping with computational resource limitations in the 
dew layer and the complexity of real-life data simultaneously.  
 
6.6.1. Simulation configurations and federated learning scenarios 
Three key parameters, i.e., the number of nodes, participation rate in each round, and the 
number of training rounds, were determined to manage the resource budget and evaluate the 
effects of design factors on the performance of federated learning. The combination of these 
three parameters controls the total computational and communicational loads of the system. 
Therefore, the normalized computational load was designed for a fair comparison of scenarios: 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 =  
𝑁𝑁 × 𝐶𝐶 × 𝑅𝑅

6
 (32) 

A normalization factor of 6 is set. The product of N×C×R is 6 in the reference scenario (i.e., 
Configuration 1). Dividing all values by this factor yields a computational load of 1 for the 
reference scenario, and the values of other scenarios are reported in an undimensionalized and 
comparable format. Table 13 lists the configurations of fifteen simulations devised for 
federated learning, where the three main parameters (N, C, and R) are provided, along with the 
corresponding normalized computational load. 
 

Table 13. Configurations of fifteen federated learning simulations 
Simulation ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Number of 
Clients (N) 5 5 5 10 10 10 20 20 20 20 50 50 50 50 50 

Client 
Participation 

Rate (C) 
0.1 0.3 1 0.1 0.3 1 0.05 0.2 0.5 1 0.05 0.1 0.3 0.5 1 

Number of 
Rounds (R) 12 15 18 12 15 18 10 12 15 18 8 10 12 15 18 

Normalized 
Computational 
Load Prediction 

1 3.75 15 2 7.5 30 1.66 8 25 60 3.33 8.33 30 62.5 150 

 
The search space of the three main parameters is: 

- 𝑁𝑁 ∈ {5,10,20,50}; 
- 𝐶𝐶 ∈ {0.05,0.1,0.2,0.3,0.5,1}; 
- 𝑅𝑅 ∈ {8,10,12,15,18}. 



These ranges produce 120 possible combinations. However, not all of these combinations are 
unique since combinations that have the same product of N×C×R generate the same normalized 
computational load (Eq. (32)) and produce duplicate results. To eliminate such redundancy and 
enable optimal resource utilization, merely fifteen configurations yielding distinct normalized 
computational loads were selected (Table 13). Two configurations with a normalized 
computational load of 30 (i.e., Configurations 6 and 13) were not excluded so that the effects 
of N and C at a given normalized computational load on stability, latency, and communication 
cost could be evaluated.  
 
6.6.2. Binary classification (FedOpt aggregation algorithm) 
As shown in Table 14, the lightweight 1D-CNN model produced an accuracy and F1-score of 
1.0 in all federated learning simulations. This is explained by the optimized architecture with 
a single Conv1D layer that effectively captured the local patterns of network flows and 
addressed computational resource limitations in the dew layer. The selection of the FedOpt 
aggregation algorithm was also a determinant; the adaptive server optimizer enabled the global 
model to converge in only five training rounds, minimizing the communication cost. This 
combination indicates that the lightweight design and adaptive aggregation ensured full 
accuracy and communicational efficiency at the same time. 
This finding is further supported by comparison to centralized learning. In the centralized 
setting, the model obtained a test accuracy of 100% and a test loss of nearly 0.0000 within five 
epochs and then displayed the same performance in the federated setting.  
The main difference lies in the training time and communication cost; the training time was 
793 s in the centralized setting, while it was found to vary from 753 to 4629 s in the federated 
setting, depending on the configuration. In the optimal configuration (i.e., Configuration 11), 
the training time was almost the same as that in the centralized setting, with the advantage that 
no raw data was transmitted, and merely model parameters were shifted.  
Therefore, although there was a communication overhead, it was negligible compared to full 
data transmission, and data privacy was protected. It should also be noted that, despite the IID 
data in the nodes, the Edge-IIoTset is intrinsically heterogeneous and imbalanced. Thus, the 
high convergence rate with such excellent accuracy demonstrates the efficiency of the model 
in handling the complexity of real-life data.  
As shown in Fig. 5 and Table 15, Configuration 11 established the best trade-off between the 
three key criteria: an F1-score of 100, a communication cost of 0.8 MB, and a simulation time 
of 753 s. Despite their identical classification performance, the other configurations were 
excluded from the Pareto frontier due to their extremely high communication costs (up to 19.89 
MB) and simulation times (up to 4629 s).  
This highlights the necessity of choosing optimal values for N, C, and R to control the 
computational and communicational loads. Moreover, the Pearson correlation analysis 
supported this finding (Fig. 6). The evaluation criteria, i.e., accuracy, precision, recall, and F1-
score, were the same across all configurations; however, a significant, positive correlation 
existed between the communication cost and simulation time. In other words, an increase in 
the participation rate or the number of rounds merely increases the system overhead and 
decreases overall efficiency without improving model quality. 
 
 
 



Table 14. Results of fifteen simulation configurations under the binary scenario in federated 
learning 

Simulation 
ID 

Accuracy 
(%) Loss Rounds to 

Convergence 
Precision 

(%) 
Recall 

(%) 
F1-

Score 
(%) 

Comm. 
Cost 
(MB) 

Simulation 
Time (s) 

Inference 
Time (s) 

1 100 1.00E-15 5 100 100 100 0.80 2147.69 0.1497 
2 100 2.95E-15 5 100 100 100 0.80 2111.07 0.1489 
3 100 1.37E-17 5 100 100 100  1.99 3744.79 0.1464 
4 100 3.30E-17 5 100 100 100 0.80 1334.31 0.1492 
5 100 4.98E-18 5 100 100 100 1.19 1391.73 0.1504 
6 100 8.40E-17 5 100 100 100 3.98 3820.14 0.151 
7 100 1.52E-14 5 100 100 100 0.80 968.22 0.1501 
8 100 8.01E-15 5 100 100 100 1.59 1371.13 0.1504 
9 100 8.74E-15 5 100 100 100 3.98 2295.39 0.151 

10 100 1.21E-15 5 100 100 100 7.96 3701 0.1457 
11 100 1.11E-13 5 100 100 100 0.80 753.66 0.1529 
12 100 2.60E-14 5 100 100 100 1.99 971.8 0.1501 
13 100 5.59E-15 5 100 100 100 5.97 1641.61 0.1482 
14 100 2.88E-15 5 100 100 100 9.94 2524.47 0.1616 
15 100 5.20E-15 5 100 100 100 19.89 4628.74 0.1725 

  

 
Fig. 5. Pareto frontier under the binary scenario (trade-off between the communication cost 

and simulation time) in federated learning 
 

Table 15. Pareto-optimal configuration corresponding to Fig. 5 under the binary federated 
learning scenario 

ID F1-Score (Macro) 
(%) Comm (MB) Time (s) Conv. Rounds 

11 100 0.80 753 5 



 
Fig. 6. Pearson correlation matrix for evaluation criteria under the binary scenario in 

federated learning 
 

6.6.3. Six-class scenario (FedAvgM aggregation algorithm) 
As shown in Table 16, the lightweight 1D-CNN model with the FedAvgM algorithm showed 
satisfactory stability in the six-class scenario, despite its higher complexity than the binary 
scenario. In most configurations, accuracy was higher than 96%, and the F1-score (macro) 
varied from 0.88 to 0.91. FedAvgM played a significant role in this performance since the 
incorporation of the momentum into the aggregation process decreased variations induced by 
the intrinsic data heterogeneity of the Edge-IIoTset and shortened and stabilized the 
convergence path. The combination of the optimal 1D-CNN model and FedAvgM algorithm 
indicates that an efficient and lightweight architecture can be established for dew settings even 
under imbalanced and heterogeneous data.  
Fig. 7 and Table 17 represent the multi-objective analysis to evaluate the trade-off between 
three key criteria: F1-macro, communication cost, and simulation time. Five configurations 
(including Configurations 1, 5, 7, 8, and 11) were found to form the Pareto frontier. They 
produced an F1-macro of approximately 0.91, which is comparable to centralized learning (F1-
score (macro)=91.50 in 4664 s). However, the training times of the configurations in the Pareto 
frontier were significantly shorter, varying from 972 to 3388 s. For example, Configuration 1 
was calculated to have an F1-score of 91.25, a communication cost of 11.09 MB, and a time of 
2301, representing the best trade-off between the key criteria. This suggests that federated 
learning enabled comparable accuracy to centralized learning without raw data transmission 
and even displayed superior performance in terms of training time in many configurations.  
The Pearson correlation analysis provides deeper insights into these patterns (Fig. 8). The 
negative correlation between the F1-score (macro), the number of rounds, and simulation time 
(r≈–0.7) suggests that an increase in the training length in heterogeneous data not only does 
not improve model quality but also reduces efficiency. Furthermore, the positive correlation 
between the communication cost and simulation time (r≈0.61) demonstrates that an increase in 
the participation rate of nodes directly raises the system load without significantly improving 
accuracy. These findings, along with Pareto analysis, highlight the importance of setting a 



limited participation rate and using momentum-based aggregation algorithms since this may 
protect data privacy, control the network overhead, and provide a comparable level of accuracy 
to centralized learning. 
The average inference time for each sample remained in the range of 0.156-0.163 s across all 
federated learning simulations (Table 16). This stability indicates that the alteration of N, C, R, 
and, thus, computational and communicational loads had no effect on the ultimate prediction 
speed of the model. This is explained by the lightweight character of the 1D-CNN architecture; 
once training has been completed, the inference process is dependent only on the final model 
structure and operates independently of the simulation conditions.  
 

Table 16. Results of fifteen simulation configurations under the six-class scenario in 
federated learning 

Simulation 
ID 

Accuracy 
(%) Loss Rounds to 

Convergence 
Precision (%) 

(Macro/Weighted) 
Recall (%) 

(Macro/Weighted) 
F1-Score (%) 

(Macro/Weighted) 
Comm. 

Cost 
(MB) 

Simulation 
Time (s) 

Inference 
Time (s) 

1 97.41 0.0558 7 93.62/97.89 91.03/97.41 91.25/97.35 11.09 2301.05 0.1632 
2 97.39 0.0566 9 93.35/97.82 91.01/97.39 91.17/97.33 14.26 2946.65 0.1598 
3 93.54 0.1333 18 82.55/95.51 81.71/93.54 78.17/93.39 71.29 10016.86 0.1615 
4 97.26 0.0628 12 90.51/97.70 90.65/97.26 89.62/97.23 19.01 2643.86 0.1565 
5 97.45 0.0566 15 93.64/97.94 91.35/97.45 91.44/97.40 35.64 3388.27 0.1606 
6 95.68 0.0843 18 75.65/95.99 87.58/95.68 78.38/95.59 142.57 10650.41 0.1606 
7 97.23 0.0613 6 92.54/97.62 90.42/97.23 90.59/97.18 9.50 1132.51 0.1591 
8 97.26 0.0601 7 92.91/97.70 90.35/97.26 90.61/97.20 22.18 1688.9 0.1581 
9 96.81 0.0694 9 92.77/97.23 87.32/96.81 88.88/96.71 71.29 3481.99 0.1622 

10 96.84 0.0723 9 92.43/97.48 88.19/96.84 88.87/96.77 142.57 5643.37 0.1608 
11 96.93 0.0699 6 91.50/97.27 88.57/96.93 89.23/96.88 9.50 972 0.1572 
12 96.91 0.0663 6 91.52/97.24 87.83/96.91 88.86/96.86 23.76 1165.55 0.1566 
13 96.77 0.0725 8 91.22/97.09 87.21/96.77 88.32/96.69 95.05 2571.88 0.1603 
14 96.53 0.0751 8 81.33/96.73 86.07/96.53 81.47/96.42 158.41 3945.11 0.1572 
15 96.7 0.0751 10 90.94/97.09 87.76/96.70 88.04/96.55 396.04 8118.9 0.1608 

 

 
Fig. 7. Pareto frontier under the six-class scenario in federated learning (trade-off between 

communication cost and simulation time) 
 
 
 



Table 17. Pareto-optimal configurations corresponding to Fig. 7 under the six-class federated 
learning scenario 

ID F1-Score (Macro) 
(%) Comm (MB) Time (s) Conv. Rounds 

11 89.23 9.50 972 6 
7 90.59 9.50 1132 6 
1 91.25 11.09 2301 7 
8 90.61 22.18 1688 7 
5 91.44 35.64 3388 15 

 

 
Fig. 8. Pearson correlation matrix for evaluation criteria under the six-class scenario in 

federated learning 
 

6.6.4. Fifteen-class scenario (FedMedian aggregation algorithm) 
As shown in Table 18, the 1D-CNN model maintained a high level of stability and accuracy in 
the fifteen-class scenario, despite a significant increase in the complexity and diversity of 
classes. The shallow structure of 1D-CNN minimized the computational load in extracting local 
features, with no major drop in the key criteria, such as F1-score and precision. The FedMedian 
algorithm played a key role since it is robust to inconsistent and imbalanced data and prevents 
the deviation of the global model due to the extreme heterogeneity of the Edge-IIoTset, 
stabilizing convergence in a limited number of rounds.  
Fig. 9 and Table 19 show the multi-objective optimization results. The first Pareto frontier 
comprised Configurations 2, 4, 7, 8, 11, and 12, with a trade-off between the three key criteria: 
F1-score (macro), simulation time, and communication cost. These configurations yielded an 
F1-score (macro) of 0.80-0.85; although the F1-score was smaller than centralized learning 
(F1=0.8871), the configurations were found to have significantly shorter training times. For 
example, Configuration 11 obtained an F1-score of 0.8012 with a communication cost of 2.83 
MB in only 933 s, while an F1-score of 0.881 was achieved within nearly 8935 s in centralized 
learning. This indicates that federated learning can significantly decrease the training time and 
communication overhead with a slight accuracy drop in limited-resource operational settings, 
representing a more practical solution.  



These findings are supported by the Pearson correlation coefficients (Fig. 10). It was found that 
the F1-score (macro) had strong correlations with precision (macro) (r≈0.92) and recall (macro) 
(r≈0.99), suggesting model robustness in various performance aspects. In addition, the positive 
correlations between the communication cost and simulation time (r≈0.58) and between the 
number of rounds and simulation time (r≈0.90) suggest that an increase in the participation of 
nodes or training time directly increases the computational and communicational loads without 
a significant improvement in model quality. Therefore, optimizing N, C, and R and restraining 
the participation rate would be an effective strategy to achieve communication and time 
efficiency, along with an acceptable level of accuracy. The average inference time under the 
fifteen-class scenario varied from 0.154 to 0.196 s for each sample. These relatively stable 
inference times indicate that a rise in the number of classes had no significant effect on the 
online prediction cost, and the 1D-CNN model provided a short response time for real-time 
applications, even in more complex scenarios.  
 

Table 18. Results of fifteen simulation configurations under the fifteen-class scenario in 
federated learning 

Simulation 
ID 

Accuracy 
(%) Loss Rounds to 

Convergence 
Precision (%) 

(Macro/Weighted) 
Recall (%) 

(Macro/Weighted) 
F1-Score (%) 

(Macro/Weighted) 

Comm. 
Cost 
(MB) 

Simulation 
Time (s) 

Inference 
Time (s) 

1 96.62 0.0713 12 89.01/96.97 83.59/96.62 84.14/96.67 5.66 3992.92 0.1646 
2 96.67 0.0722 9 89.05/96.93 84.10/96.67 84.54/96.72 4.25 2991.84 0.1543 
3 96.55 0.0768 13 89.18/96.92 83.42/96.55 83.62/96.46 15.33 7796.55 0.1578 
4 96.62 0.074 10 89.62/97.07 83.08/96.62 84.06/96.69 4.72 2368.98 0.1606 
5 96.52 0.0726 15 89.97/97.09 82.67/96.52 83.71/96.56 10.61 4270.93 0.1964 
6 95.67 0.1052 18 82.35/96.26 73.87/95.67 74.76/95.41 42.45 12638.28 0.185 
7 96.25 0.082 9 87.91/96.76 82.16/96.25 82.19/96.13 4.25 1926 0.1934 
8 96.13 0.0838 7 88.22/96.84 81.86/96.13 81.99/95.98 6.60 1701.01 0.1603 
9 96.08 0.0828 9 85.99/96.18 80.38/96.08 81.32/96.09 21.23 3475.98 0.1619 

10 96.01 0.0914 14 88.29/96.58 80.66/96.01 81.28/95.89 66.04 8715.55 0.1611 
11 95.7 0.0957 6 84.78/95.83 79.13/95.70 80.12/95.71 2.83 933.05 0.1551 
12 95.78 0.0958 8 85.52/95.91 79.32/95.78 80.52/95.78 9.43 1515.73 0.161 
13 95.8 0.0958 8 83.61/95.91 79.00/95.80 79.05/95.81 28.30 2582.91 0.1601 
14 96.1 0.0888 14 86.06/96.17 81.20/96.10 81.76/96.11 82.55 7115.5 0.1627 
15 95.87 0.0954 18 85.59/96.04 79.28/95.87 80.21/95.84 212.27 8873.4 0.1558 

 

 
Fig. 9. Pareto frontier under the fifteen-class scenario in federated learning (trade-off between 

communication cost and simulation time) 



Table 19. Pareto-optimal configurations corresponding to Fig. 9 under the fifteen-class 
federated learning scenario 

ID F1-Score (Macro) 
(%) Comm (MB) Time (s) Conv. Rounds 

11 80.12 2.83 933 6 
7 82.19 4.25 1926 9 
2 84.54 4.25 2991 9 
4 84.06 4.72 2368 10 
8 81.99 6.60 1701 7 

12 80.52 9.43 1515 8 
 

 
Fig. 10. Pearson correlation matrix for evaluation criteria under the fifteen-class scenario in 

federated learning 
 

6.6.5. Analysis of sensitivity to R, N, and C 
To further evaluate the performance of the proposed model under various scenarios, the 
sensitivity of its efficiency and effectiveness to three key parameters in federated learning, i.e., 
N, C, and R, was measured. Sensitivity analysis allows for measuring the contribution of a 
given factor to performance enhancement/degradation and highlights its optimal range or 
saturation points. This approach is even more important in real-life settings with limited 
resources as it helps select an efficient configuration and avoid resource waste. To derive clear 
and concise results, the sensitivity analysis was conducted based on the F1-macro only under 
the six-class scenario since it provides an intermediate level of complexity between simple 
(binary) and sparse (fifteen-class) scenarios and offers a balanced representation of system 
behavior. Furthermore, F1-macro would enable a fairer evaluation on imbalanced data since it 
assigns equal weights to classes. 
A single-variable analysis was performed to assess the contribution of the number of nodes 
(i.e., C and R remained unchanged to capture the independent effect of N). Configurations with 
C=1.0 and R=18 were selected since they covered the maximum participation rate and 
maximum number of training rounds, and the alteration of N would produce the maximum 



outcome. In addition, to obtain a more reliable sensitivity profile, this analysis was conducted 
by re-running the federated learning experiments under multiple N configurations rather than 
relying on a single limited set of predefined settings. As shown in Fig. 11, increasing the 
number of nodes from 5 to around 20 substantially improved F1-macro (from approximately 
0.82 to about 0.88). After reaching this range, further increases in N did not yield a consistent 
performance gain, and F1-macro remained largely stable with only minor fluctuations across 
larger N values up to 50. This indicates that raising the number of nodes up to an effective 
range can enhance detection quality by leveraging broader data diversity, whereas beyond an 
optimal level the marginal benefits saturate and small oscillations may occur due to increased 
dispersion across clients and the stochasticity of distributed training, without providing a clear 
improvement in efficiency. 
To assess the independent contribution of the participation rate, the number of nodes, and the 
number of rounds remained unchanged. Since such a combination of parameters did not exist 
in the configurations, the partial dependence plot (PDP) was employed based on regression 
analysis. It would estimate the average effect of C on F1-macro by keeping other variables 
unchanged. According to Fig. 12, the correlation between the participation rate and 
performance was not completely linear or uniform. At smaller participation rates (≈0.1-0.2), 
model performance was relatively high since the gradients were mostly stable, and the 
communication cost was low. As the participation rate rose to a medium level (0.3-0.6), the 
lack of a sample distribution balance and increased gradient noise decreased F1-macro to a 
significant extent, despite increased data diversity. At highly large participation rates (>0.7), 
almost all nodes participated in each round, and the data heterogeneity effect declined. As a 
result, performance began to improve again. This represents an inverted U-curve; highly small 
or large participation rates yielded higher performance, while medium participation rates led 
to the lowest performance. This finding is essential from a practical perspective. A low 
participation rate (≈0.1-0.2) would be optimal when the communication resources are limited 
since optimal performance can be achieved. On the other hand, high participation rates (≈1.0) 
ensure the maximum performance when accuracy maximization is the primary goal, and there 
is no communication limitation. Thus, it is essential to avoid medium participation rates to 
prevent poor accuracy and communication resource waste. 
 

 
Fig. 11. F1-macro versus N (C=1.0 and R=18) 

 



 
Fig. 12. F1-macro versus C (N=20 and R=15) 

 
Likewise, the independent contribution of the number of training rounds to performance was 
evaluated at a given number of nodes and participation rate. However, there was no such 
confirmation in the simulations, and the PDP approach was adopted. Fig. 13 plots F1-macro 
versus the number of training rounds for 20 nodes and a participation rate of 0.3. An estimated 
𝑅𝑅∗ value of nearly 8.4 was found as an approximate threshold to handle the initial instability. 
However, the observed data suggest that performance continued to drop at R values of up to 
13-14, and stable convergence began at R values above 13-14 in the curve. This difference is 
explained by the approximate character of the PDP method, which represents the minimum 
smoothed curve slightly earlier than the real minimum. From a practical perspective, the results 
suggest that (1) training rounds fewer than 10 leads to a major performance decrease, and (2) 
a rise in the number of training rounds above the real threshold (13-14) improves performance; 
however, the improvement rate reduces, and a trade-off is to be established between 
performance improvement, communication cost, and training time.  
 

 
Fig. 13. F1-macro versus R (N=20 and C=0.30) 



The interaction of the number of nodes and participation rate was also evaluated. In the design 
of real-life federated learning systems, these parameters are tuned simultaneously, and altering 
one parameter without taking the other into account would lead to incomplete interpretations. 
Therefore, the number of training rounds was set to an intermediate level (R=12), and F1-macro 
was plotted versus N and C in a contour map to capture the overlapping effect of these two 
parameters (Fig. 14). An inverted U-curve was derived, even though its intensity would be 
dependent on the network scale; in small to medium networks (N<20), an intermediate 
participation rate (C≈0.3-0.6) maximizes the F1-score reduction. In larger networks, on the 
other hand, the F1-score reduction is moderated, with lower sensitivity to the participation rate. 
In other words, a larger network would enjoy higher robustness to participation rate variations. 
However, achieving higher accuracy requires the simultaneous enlargement of N and C as 
increasing either parameter is not sufficient. The iso-contours suggest that a moderate 
performance level (F1≈0.88) can be achieved even at a small participation rate (C≈0.1) and a 
medium network scale (N=10-25); however, higher performance levels (F1=0.91-0.92) would 
require a minimum of 20 nodes and a minimum participation rate of 0.2-0.3. The maximum 
performance (R≈0.95) can be implemented only by combining large networks (N≈30-50) and 
relatively large participation rates (C≈0.35-0.50). Overall, based on the interaction of the 
number of nodes and participation rate, it can be concluded that (1) moderate participation rates 
are to be avoided in small or medium networks to prevent maximum performance reduction, 
(2) maximum performance in larger networks requires a simultaneous enlargement of N and 
C, even though the negative effect of medium C levels is lower, and (3) these results 
complement the single-variable sensitivity analysis and show that the participation strategy 
should be optimized based on the network scale to prevent apparent contradictions in the 
interpretation of the outcomes. 
 

 
Fig. 14. F1-macro versus N and C (R=12) 

 
As mentioned, Configurations 6 and 13 were deliberately incorporated to evaluate the effects 
of the internal structure of parameters under the same normalized load. They had a normalized 
load of 30 and applied different combinations of parameters (Configuration 6 with R=18, C=1, 
and N=10 and Configuration 13 with R=12, C=0.3, and N=50). According to Table 20, 
significant differences between the configurations were observed, despite their identical 
normalized load. Configuration 13 yielded a greater F1-macro (0.8832>0.7838), converged in 



a smaller number of rounds (8<18), and had a lower communication cost (95.05 MB<142.57 
MB). As a result, although it can serve as a measure of the overall computational and 
communicational pressure, the normalized load is not sufficient for explaining convergence 
quality and communication efficiency. The parameter combination (N, C, and R) can 
independently affect gradient stability, data diversity, and communication cost. In particular, 
the combination of more nodes with a moderate participation rate and fewer training rounds 
(Configuration 13) was more effective than the combination of fewer nodes with full node 
participation and many training rounds in establishing a robust trade-off between accuracy, 
convergence rate, and communication efficiency. Therefore, it can be concluded that an 
optimized combination of parameters is as important as overall load management in the design 
of federated learning systems. 

 
Table 20. Comparison of Configuration 6 versus Configuration 13 at a given normalized load 
Simulation 

ID N C R Normalized Computational Load 
Prediction 

F1-
Macro 

Rounds to 
Convergence 

Comm. Cost 
(MB) 

6 10 1 18 30 0.7838 18 142.57 
13 50 0.3 12 30 0.8832 8 95.05 

 
6.6.6. Real-Time Feasibility and Resource-Efficiency Analysis 
To evaluate the practical deployability of the proposed lightweight 1D-CNN in dew-computing 
environments, its runtime, memory footprint, and compatibility with resource-constrained 
hardware are examined. The analysis focuses on three key aspects: inference latency, memory 
consumption, and integration with lightweight inference engines. 
The model employs a single Conv1D layer followed by a small dense layer, avoiding recurrent 
structures (LSTM/GRU) that introduce sequential dependencies and longer inference times. 
The forward-pass complexity is 𝑂𝑂(𝐹𝐹 × 𝐾𝐾 × 𝐿𝐿) for the convolution and 𝑂𝑂(𝐷𝐷𝑖𝑖𝑖𝑖 × 𝐷𝐷𝑜𝑜𝑜𝑜𝑜𝑜) for the 
dense layer, where F is the number of filters, K the kernel size, L the length of the input feature 
vector (10–40 after MI-based selection), and 𝐷𝐷𝑖𝑖𝑖𝑖,𝐷𝐷𝑜𝑜𝑜𝑜𝑜𝑜 the input/output dimensions of the dense 
layer. With typical values (𝐹𝐹 = 32, 𝐾𝐾 = 3, 𝐿𝐿 ≈ 30, 𝐷𝐷𝑖𝑖𝑖𝑖 = 32, and 𝐷𝐷𝑜𝑜𝑜𝑜𝑜𝑜 = 2,6, 𝑜𝑜𝑜𝑜 15), the total 
floating-point operations per sample remain below 5 kFLOPs, enabling inference within a few 
milliseconds on modest CPUs (e.g., Intel Atom or ARM Cortex-A series). 
The total number of trainable parameters ranges from approximately 1 𝑘𝑘–2 𝑘𝑘 for the binary 
scenario to 3 𝑘𝑘–5 𝑘𝑘 for the fifteen-class scenario. Storing the model as a 32-bit float 
TensorFlow Lite flat-buffer yields a size of ≈  12–20 𝐾𝐾𝐾𝐾, comfortably fitting in the SRAM of 
typical dew-layer microcontrollers (e.g., ESP32, Raspberry Pi Pico). During inference, the peak 
RAM usage (activations plus intermediate buffers) is below 50 KB, leaving ample room for 
other dew-layer tasks. 
The purely feed-forward structure and small parameter count make the model directly 
convertible to TF-Lite, ONNX Runtime Mobile, or similar edge-optimized frameworks. 
Post-training quantization (e.g., INT8) can reduce the model size by 4 times and accelerate 
inference by 2–3 times with negligible accuracy loss. Pruning (removing redundant 
filters/weights) can additionally shrink the model to under 10 KB without sacrificing detection 
performance. 
In the federated setting, each local update involves a single epoch over the node’s data subset, 
which, thanks to the shallow architecture, completes in seconds even on low-power dew 
hardware. The aggregated model delta transmitted per round is merely the difference of the 
small parameter set (a few kilobytes), drastically cutting communication costs compared to 
raw-data transmission. This design ensures that the overall training loop respects the limited 
bandwidth and intermittent connectivity of dew networks. 



6.6.7. Proposed model versus earlier frameworks in federated learning 
The performance of the proposed model in federal learning is compared to earlier works in this 
section. However, this comparison encounters structural limitations since each work had 
different definitions of factors, such as the number of clients, client participation rate in each 
round, the number of local training rounds, and data split strategy (IID and non-IID). These 
setting differences do not allow for a direct comparison under completely identical conditions. 
Therefore, Table 21 provides only an overall representation of models in similar scenarios 
rather than a solid comparison. 
Previous studies [29–31] focused on specific aspects of model design and/or experimental 
conditions and reported considerable results. However, they incorporated a limited range of 
scenarios or lacked sufficient mechanisms to control communication costs and stability under 
real-life IIoT conditions. In contrast, the proposed model yielded better results based on three 
key factors. First, the intrinsic characteristics of the model were designed such that not only 
computational simplicity would be retained but also effective patterns could be extracted from 
massive, diverse data. Second, the selection of aggregation algorithms based on the complexity 
level of the system enhanced convergence and stability. Third, the adoption of Bayesian 
optimization to tune hyperparameters enabled efficient exploration in a large search space and 
provided combinations that established an optimal trade-off between accuracy, training time, 
and communication cost.  
 

Table 21. Proposed model versus earlier works under three classification scenarios in 
federated learning 

Classifier FL Settings 
Best Accuracy (%) Best F1-Weighted (%) 
2-

class 
6-

class 
15-

class 2-class 6-class 15-
class 

Unsupervised 
Deep Auto-Encoder [29] 

N=2 
R=5 99.8 - - NR - - 

CNN [30] 𝑁𝑁 ∈ {3,9,15} 
R=50 - - 90.19 - - NR 

RNN [30] 𝑁𝑁 ∈ {3,9,15} 
R=50 - - 91.26 - - NR 

DNN [31] N=10 
R=25 100 98.80 98.80 100 86.23 86.23 

Proposed Solution 
𝑁𝑁 ∈ {5,10,20,50} 
𝐶𝐶 ∈ {0.05,0.1,0.2,0.3,0.5,1} 
𝑅𝑅 ∈ {8,10,12,15,18} 

100 97.45 96.67 100 97.40 96.72 

 
7. Conclusion 
 
The findings demonstrated that the proposed 1D-CNN architecture serves as a lightweight and 
effective intrusion detection framework in IIoT systems and dew computing in both centralized 
and federated learning settings. This study developed an optimal technique for intrusion 
detection in dew settings, which established a trade-off between high accuracy, a short 
inference time, and an optimal computational cost. The proposed model was found to 
outperform earlier works in terms of quantitative indices and can be deployed in real-life 
industrial settings from an operational perspective. The proposed model consistently yielded 
high accuracy, precision, recall, and F1-score on the Edge-IIoTset under binary, six-class, and 
fifteen-class scenarios, while it had a remarkably short inference time. This is, in particular, 
important for implementation in limited-source systems where real-time responsiveness is 
required. Two major factors had the greatest contributions to model quality: (1) the use of the 
Conv1D layer allowed for extracting local patterns from the time-series data of networks and 
effectively detected the discriminative structures of attacks, and (2) the Dropout and optimal 



hyperparameter tuning prevented overfitting and enabled stable model performance, even 
under imbalanced data conditions. As a result, the proposed model provided a more robust and 
effective trade-off between accuracy, time, and computational cost compared to basic 
architectures, e.g., DNN, and even heavier models, e.g., CNN+LSTM+GRU. In the federated 
learning setting, the proposed model enjoyed key advantages, i.e., the elimination of raw data 
exchange and the reduction of the communication cost, while maintaining prediction accuracy. 
Sensitivity analysis on key parameters, including the number of nodes N, participation rate C, 
and the number of training rounds R, revealed that the system achieved stable convergence in 
a wide range of configurations, even though its growing efficiency decreased above an optimal 
level. This finding is essential for system designers since the selection of optimal 
configurations helps ensure quality and control the communication cost and training time. The 
Pareto frontier analysis further demonstrated that points can be identified to establish an 
effective trade-off between performance and efficiency. While the proposed lightweight 1D-
CNN is designed as a general-purpose intrusion detection model for dew environments, future 
work may explore the integration of specialized or hybrid models for attacks with strong 
sequential characteristics, such as MitM, Password, SQL Injection, and Malware. For instance, 
protocol-aware or temporal sequence models could be combined with the proposed framework 
to enhance the detection of specific intrusion behaviors, provided that sufficient representative 
data are available. Moreover, the adoption of techniques such as model pruning, quantization, 
or knowledge distillation may enable the deployment of the model in even more limited 
devices. Ultimately, non-IID data conditions and explainability mechanism development can 
be addressed to enhance trustworthiness and transparency in system decision-making. 
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