
A Novel Intrusion Detection System for Dew Computing Environments
Based on an Enhanced Federated Deep Learning Model

Alireza Fadaei1, Behrang Barekatain1,2*

1 Department of Computer Engineering, Na.C., Islamic Azad University, Najafabad, Iran

2 Big data Research Center, Na.C., Islamic Azad University, Najafabad, Iran

*Corresponding Author: Behrang_Barekatain@iau.ac.ir

Abstract
Recently, dew computing has drawn extreme attention in response to the ever-increasing
demand for processing massive data rapidly in the Industrial Internet of Things (IIoT).
However, the vulnerability of such infrastructures to cyberattacks has also risen drastically.
Localized services and uninterrupted functionality even during disconnections represent key
advantages of dew computing. Nevertheless, due to computational resource limitations and
connectivity instabilities, conventional intrusion detection systems, which are mostly based on
or require massive computational resources, may lack efficiency in such networks. In contrast
to existing dew or edge intrusion detection approaches that commonly rely on centralized
training with raw traffic transferred to a server, or adopt heavier deep architectures that are less
suitable under dew constraints, this study proposes a single-layer 1D CNN that offers a
practical balance between detection performance and deployment feasibility in resource-
constrained and intermittently connected environments. The proposed model was implemented
through federated learning on a fully dew-layer architecture, where the aggregation server and
all participating nodes are deployed within the dew layer and proceed with the training process
without dependence on the upper (fog or cloud) layers. This approach reduces bandwidth
consumption, ensures data privacy, and significantly decreases latency, enabling effective
training, even under unstable conditions. Edge-IIoTset data were preprocessed, and influential
features were extracted through mutual information (MI) during the development process. The
proposed model was evaluated in binary, six-class, and fifteen-class scenarios in a centralized
setting and then simulated in a federated setting. It was found to show stable performance under
both settings, yielding an average detection accuracy of 97.01% under the fifteen-class scenario
in the centralized setting and 96.67% in the federated setting. The results of this study will be
of great help to future researchers in advancing their goals in this research field.

Keywords: Industrial Internet of Things (IIoT), Dew computing, Intrusion Detection System
(IDS), Federated Learning, 1D-CNN (Convolutional Neural Network), Edge-IIoTset

1. Introduction

Considering the ever-increasing growth of the Industrial Internet of Things (IIoT) and the
continuous generation of sensitive data, centralized architectures such as cloud computing
cannot individually meet the real-time requirements of such systems since the continuous
transmission of massive data to cloud centers raises latency and bandwidth consumption, and
the massive dependence on stable connectivity threatens uninterrupted functionality [1,2]. To
address this challenge, dew computing was introduced as the closest layer to the data source.
It fulfills processing at the sensor and actuator level and remains autonomous even in the event
of Internet disconnections [3–5]. In light of its operational independence, cooperation with
upper layers, and real-time responsiveness, dew computing has become a key setting for
reliable systems in areas such as IIoT, health, smart agriculture, autonomous vehicles, and
robotics [2,6]. Furthermore, security and privacy are protected by storing the data in the
generation location and decreasing the demand for raw data transmission [7,8].
Apart from its advantages, the dew layer encounters a set of intrinsic challenges. Limited
processing power, memory, and bandwidth prevent the fulfillment of heavy and complex tasks
and increase energy consumption [4,9]. Hardware and software heterogeneity between nodes
challenges the scalability and maintenance of systems [5]. Moreover, data protection and
security are a key dew-layer challenge to be addressed [9]. Hence, this study particularly
focuses on the security challenge in the dew layer. This challenge can be rooted in the
processing, communication, and structural limitations of the dew layer as lightweight
equipment with no strong protective infrastructure cannot implement expensive security
mechanisms, and a decentralized structure raises the risk of rapid attack propagation [7,8,10].
Therefore, the dew layer has a higher vulnerability than other layers to unauthorized access,
sensitive data leakage, real-time and injection attacks, malware contamination, identity
spoofing, and man-in-the-middle attacks, which could lead to serious functionality
interruptions [4,7,9]. If this challenge is not addressed effectively, the compromise of dew
nodes can propagate to upper layers and lead to critical data corruption, disrupting high-level
decision-making and inducing serious functionality interruptions [7,8]. Therefore, it is crucial
to develop lightweight and rapid intrusion detection systems for the dew layer.
Security approaches proposed for IoT in the literature can be divided into three groups:

(I) Distributed intrusion detection systems operating through node collaboration and
trust mechanisms based on machine learning (ML) or Bayesian inference [11,12];
however, they are vulnerable to insider attacks and would require a more intricate
design for heterogeneous settings;

(II) Cloud-based systems perform security analysis in the central layer and utilize strong
resources [13,14]. However, such systems are dependent on permanent Internet
connections and have high latency;

(III) ML-based systems have been employed to detect complex threats in recent years
[15–18]. Despite their efficiency in extracting hidden nonlinear patterns from raw
data, ML-based systems would not be efficient for the dew layer due to their
computational complexity and demand for massive data and high energy.

To address the communication limitations and security requirements of the dew layer, the
present study implements a lightweight 1D-CNN intrusion detection system via federated
learning using a fully dew-layer architecture. In the proposed model, both the aggregation
server and all nodes are within the dew layer, and training is performed independently of
cloud/fog layers. To cope with limited computational resources, the model was designed with
a small set of parameters and a short inference path, compared to heavier deep architectures
reported in the literature, such as CNN+LSTM+GRU and LSTM+CNN models [19,20], and
input dimensionality would be decreased through MI-based feature selection. The exchange of

data is limited to model updating, and no raw data is discharged from the nodes in light of
federated aggregation. As a result, the proposed model not only significantly reduces
bandwidth consumption and ensures privacy protection but also enables stable and low-latency
training, even under unstable connectivity.
A total of fifteen federated scenarios were designed and simulated to evaluate the proposed
model comprehensively based on three parameters: (I) number of nodes (as a measure of
network size and data distribution level), (II) participation rate (to address offline/absent
nodes), and (III) number of training rounds (regarding limited computational resources).
Finally, the performance of the proposed model was evaluated using the Edge-IIoTset [21] in
binary, six-class, and fifteen-class classification scenarios.
Overall, the main contributions of this study include:

• Deploying a lightweight and efficient intrusion detection system for the dew layer,
where lightweight is explicitly defined in terms of (i) parameter count, (ii) model size
(memory footprint), and (iii) inference time. By reducing the number of trainable
parameters, the proposed 1D-CNN lowers both the memory requirement and the
computational burden, while its compact representation and short inference path enable
fast on-device inference. Consequently, the model is practically deployable on dew
servers (e.g., PC/workstation-class nodes) and supports continuous, cloud-independent
operation under intermittent connectivity.

• Reducing communication overhead in federated learning by transmitting model updates
rather than raw traffic traces. Specifically, each round exchanges only the model
parameters/updates, so the communication cost scales with the model size and number
of participating clients, instead of the volume of raw data required in centralized
training; this reduces bandwidth demand and improves feasibility under dew
connectivity constraints.

• Shortened training time in federated learning as the processing load is distributed
between nodes, and the resulting parallelization shortens the model updating cycle.
Therefore, the average total training time in federated learning is 58% shorter than in
centralized learning.

• Sensitivity analysis can be performed in federated learning. Drawing on controlled
alteration of parameters, e.g., number of nodes, participation rate, and number of
training rounds, the effect of each parameter is independently measured, evaluating the
stability and efficiency of the system under various scenarios.

The remainder of the study is organized as follows: Section 2 reviews related work; Section 3
elaborates on the problem statement and key challenges; Section 4 highlights the main
contributions of the study; Section 5 describes the proposed method; Section 6 provides and
discusses the results; and Section 7 concludes the work and suggests future directions.

2. Related Work

Several attempts have been reported on improving the performance of intrusion detection
systems in various computing settings, e.g., cloud, fog, and, more recently, dew computing in
recent years. Given the unique characteristics of dew settings, such as limited resources,
unstable connectivity, and the need for real-time responsiveness, it is essential to design
lightweight, distributed intrusion detection systems with privacy protection. This section
provides a structured review of the literature in three key contexts: (1) intrusion detection
systems in dew computing, (2) intrusion detection models in other computing settings, e.g.,
cloud, fog, and edge computing, and (3) reports on intrusion detection using Edge-IIoTset.

2.1. Intrusion detection systems in dew computing settings
Moussa and Alazzawi [10] proposed a system to detect cyberattacks in the cloud-dew
architecture in the automotive IoT. Their model was based on a stacked autoencoder and would
transmit raw data from end nodes to the dew server in a centralized structure. Although they
sought to address the requirements of dew settings, their model remained dependent on raw
data transmission to the dew servers and did not consider a processing distribution at the dew
node level. As a result, their system was not aligned with resource limitations and real-time
responsiveness in dew settings, and gaps remained to be filled in terms of resource consumption
and data privacy.
Singh et al. [7] developed the dew-as-a-service (DaaS) framework to deploy smart intrusion
detection systems in the hybrid edge-dew architecture. The framework included the practical
implementation of an ML model using the UNSW-NB15 dataset that would be performed in
the dew layer and showed comparable performance with other models. Although the model
had a lightweight structure that could be deployed within dew settings, processing was
performed in a centralized setting in the dew server, with raw data being transmitted from nodes
to the central dew server. Moreover, no mechanism was provided to distribute training or
narrow the bandwidth, and techniques such as federated learning were not utilized. They
provided a major step toward the practical implementation of dew-based intrusion detection
systems; however, they did not address the connectivity and resource limitations effectively
and paved the way for future work in combining federated learning and lightweight
architectures.
Singh et al. [22] proposed a dew–cloud hierarchical federated learning framework for intrusion
detection in the Internet of Medical Things (IoMT). Their architecture places learning on
distributed dew servers and performs hierarchical aggregation to build a global model without
raw data exchange, aiming to improve privacy and availability under unreliable connectivity.
The intrusion detection model was based on a hierarchical long short-term memory (LSTM)
and was evaluated on TON-IoT and NSL-KDD, reporting strong classification performance.
Although the framework aligns with the motivation of dew computing, it relies on recurrent
deep models and hierarchical training that can be computationally demanding, while the paper
does not clearly quantify dew-node resource requirements or communication overhead under
constrained and unstable dew settings. Therefore, further validation is needed to assess
feasibility in lightweight, real-time dew deployments.

2.2. Intrusion detection models in cloud, fog, and edge computing
Meng et al. [11] introduced a Bayesian inference-based distributed intrusion detection system
to cope with insider attacks in medical smartphone networks. It calculated trust in nodes based
on the past experience and direct interactions and reported local results in a semi-centralized
setting. Despite satisfactory performance in two real-life hospitals, the framework was limited
to medical settings, lacked scalability for industrial or limited-resource scenarios, and did not
leverage lightweight deep learning techniques.
Liu et al. [23] developed a model to improve security and reliability in cloud computing
services. Drawing on secure virtual machines, network traffic analysis, and policy-based access
control, the model addressed security threats, including intrusion attacks. It did not have an ML
or deep learning approach and required massive data transmission to the cloud and stable
connectivity to a data center. Due to the lack of localized processing and distributed
architecture, it is not efficient in settings where computational resources are limited and real-
time responsiveness is essential.
Zhao et al. [16] proposed an integrated intrusion detection framework in which a deep belief
network (DBN) was employed for feature extraction, whereas a probabilistic neural network
(PNN) would be used for classification. Particle swarm optimization (PSO) was utilized to

optimize the architecture, and the results on the KDD Cup 1999 dataset revealed a remarkable
improvement in accuracy and speed compared to the basic methods. The model, however, was
designed for centralized settings of strong computational resources and was inefficient in
applications with limited computational resources or a distributed architecture, e.g., dew
computing.
Tian et al. [18] introduced an improved intrusion detection approach based on the DBN in
which the optimized PSO would be exploited to tune hyperparameters. The architecture
involved several restricted Boltzmann machine (RBM) layers and a support vector machine
(SVM) layer for the ultimate classification and outperformed the basic models and similar
hybrid frameworks to the KDD Cup 1999 dataset. However, it was based on centralized
processing and had no distributed mechanism or compatibility with settings of limited and
unstable resources, such as dew computing.

2.3. Reports on the Edge-IIoTset
2.3.1. Centralized learning
Tareq et al. [24] compared the ToN-IoT, UNSW-NB15, and Edge-IIoTset datasets for use in
deep learning to detect cyberattacks. Recurrent neural network (RNN), LSTM, and gated
recurrent unit (GRU) models were compared within centralized learning settings on Edge-
IIoTset, with GRU showing higher performance in accuracy and complexity. All models were
dependent on centralized processing and full raw data transmission to the central server and
lacked compatibility with distributed settings with limited resources, e.g., dew computing.
Ding et al. [25] proposed the DeepAK-IoT model for cyberattack detection in IoT as a
combination of the LSTM and GRU algorithms developed in a centralized setting. It was tested
on three datasets, including Edge-IIoTset, and showed higher performance than the basic
models. However, due to its full dependence on centralized processing and raw data
transmission to the central server, the framework would be ineffective in distributed settings
with limited resources, such as dew computing.
 Konatham et al. [19] introduced an integrated technique for anomaly detection in IIoT
networks. They combined a convolutional neural network (CNN) and an LSTM architecture to
simultaneously leverage spatial features and temporal features. It was trained with the entire
data of Edge-IIoTset in a centralized setting and outperformed single-architecture models.
However, dependence on full data transmission and high computational resource demand
remained challenges for edge or dew settings with limited resources. Sadhwani et al. [26]
proposed the SmartSentry framework to analyze cyber threats in the IIoT. It exploited
centralized deep learning and Edge-IIoTset for advanced and accurate attack detection. In spite
of its satisfactory performance, the framework was dependent on centralized processing and
full raw data transmission to the central server and did not support distributed implementation
or compatibility with limited-resource settings such as dew computing.
Kilichev et al. [20] developed an integrated intrusion detection framework in IoT-based electric
vehicle charging systems (EVCSs). It combined 1D-CNN, LSTM, and GRU in order to
simultaneously analyze spatiotemporal features. The model was trained using Edge-IIoTset in
a centralized setting and showed superb accuracy in detecting a broad range of attacks.
However, dependence on centralized processing and full raw data transmission, along with
extremely high computational costs, due to the simultaneous utilization of three deep
architectures remained barriers to its implementation in lightweight and limited-resource
settings, e.g., dew computing. However, the model showed excellent performance in terms of
accuracy.
Laiq et al. [27] developed a distributed denial-of-service (DDoS) attack detection system via
classical ML algorithms with ensemble (stacking/voting/bagging/AdaBoost/XGBoost) designs
in Edge-IIoTset and data balancing through the synthetic minority over-sampling technique

(SMOTE). It was evaluated on Edge-IIoTset. Training was centralized, and remarkably high
accuracy rates were reported. However, data heterogeneity, model lightweighting, and
communication cost calculation constraints in dew setting were not addressed, and federated
learning and evaluation on limited-resource hardware were not incorporated. Kumar et al. [28]
proposed the PETDA2C-EC framework for privacy attack detection in Edge-IoT. The model
included hybrid feature selection – e.g., random forest (RF), MI, and chi-square – and several
classical ML classifiers and was tested on UNSW-NB15, CIC-IDS2017, ToN-IoT, and Edge-
IIoTset in a centralized setting, with an accuracy rate above 99% being reported. However, the
scope of the study is limited to privacy attack detection in a centralized setup, and it does not
consider federated learning, lightweight architectures, or communication cost analysis.
Moreover, the model is not experimentally evaluated on fog or dew nodes.

2.3.2. Federated learning
Thamar et al. [29] proposed a federated learning–based system using the FedAvg aggregation
algorithm for anomaly detection in industrial IoT edge networks. By avoiding raw data
exchange among clients, the framework preserves privacy. The model was designed for binary
classification, implemented with fully connected layers, and tested on the Edge-IIoTset dataset.
However, it lacks a lightweight architecture or optimization for the dew layer, leaving its
applicability to multi-class scenarios and resource-constrained environments limited. Rashid et
al. [30] developed a federated learning-based approach using the FedAvg algorithm for
intrusion detection in the IIoT. It used Edge-IIoTset with no raw data exchange and would
protect data privacy. The model was a simple, fully connected architecture and lacked more
advanced structures, e.g., CNN or LSTM. Moreover, aspects such as the communication
overhead, localized resource consumption, and compatibility with lightweight and limited-
resource settings, e.g., dew computing, were not addressed.
Popoola et al. [31] introduced a deep federated learning-based framework for intrusion
detection in the edge settings of the IoT. It covered three different classification scenarios by
utilizing Edge-IIoTset with no raw data exchange. The model was trained locally in edge nodes,
and only the weights were transmitted to the central server to protect data privacy. This
approach is considerable in terms of scenario diversity and relative compatibility with edge
nodes; however, heterogeneous data management was not addressed, and no lightweight
architecture or optimization module was included for limited-resource settings such as dew
computing. As a result, despite its major contribution to leveraging federated learning for IoT
security, further optimization is required in lightweight and distributed settings for practical
application.

Table 1. Summary of centralized and distributed learning models for intrusion detection in
IIoT

Ref. Year Model Learning Dataset Advantages Disadvantages
(dew settings)

[11] 2017 Bayesian
inference

Semi-
centralized

Real-life data
from two
hospitals

Robust under insider
attacks, tested in real-
life medical settings

Not generalizable
to industrial

settings, lack of
deep learning

[23] 2017

Cloud security
with traffic
analysis and

policy control

No learning Conceptual/
simulation

High reliability,
advanced access
control, security
traffic analysis

Stable connectivity
demand, full data
transmission, lack

of localized
processing

[16] 2017 DBN+PSO-PNN Centralized KDD Cup
1999

Optimized
combination of DBN

with accurate

Dependence on
strong resources,

Ref. Year Model Learning Dataset Advantages Disadvantages
(dew settings)

classification, reduced
data dimensionality,

high accuracy

full data
transmission

[10] 2020 SAE
(Autoencoder) Centralized NSL-KDD High accuracy

High bandwidth
consumption,

distributed
processing not

supported, full data
transmission to the

dew server

[18] 2020 DBN + improved
PSO + SVM Centralized KDD Cup

1999

High accuracy,
hyperparameter
optimization,
accelerated

convergence, reduced
error rate

Distributed
processing not

supported, stable
connectivity

demand, full data
transmission

[7] 2021 DBN Centralized UNSW-NB15

Practical
implementation in

dew settings,
serviceable

infrastructure design

Full data
transmission to the

dew server,
distributed

processing not
supported, high

bandwidth
consumption

[24] 2022 LSTM + RNN +
GRU Centralized

Edge-IIoTset,
ToN-IoT,

UNSW-NB15

Comparison of deep
models,

comprehensive data
analysis, practical

evaluation

Distributed and
lightweight

processing not
supported, full data

transmission

[22] 2023 HLSTM Federated ToN-IoT, NSL-
KDD

Hierarchical
aggregation, strong

classification
performance

Dependence on
strong resources,
high bandwidth

consumption

[25] 2023 GRU + LSTM Centralized
Edge-IIoTset,

ToN-IoT,
UNSW-NB15

Particular deep model
design, simultaneous

leverage of LSTM and
GRU, high accuracy

Distributed
processing not

supported,
dependence on

strong resources,
high bandwidth

consumption, full
data transmission

[29] 2023 Unsupervised
deep autoencoder Distributed Edge-IIoTset

Privacy, no raw data
transmission, non-

labeled design

Evaluated solely in
binary applications,
lack of lightweight

or optimized
architecture

[30] 2023 DNN Distributed Edge-IIoTset

Privacy, no raw data
transmission,

heterogeneous data
supported

Lack of lightweight
or optimized
architecture,

dependence on
strong resources

[19] 2024 LSTM + CNN Centralized Edge-IIoTset

Combined advantages
of CNNs and LSTM,
enhanced accuracy in

anomaly detection

Distributed
processing not

supported,
dependence on

strong resources,
full data

transmission

Ref. Year Model Learning Dataset Advantages Disadvantages
(dew settings)

[26] 2024 DNN Centralized Edge-IIoTset

Comprehensive
framework design,
multidimensional

threat analysis,
satisfactory

classification accuracy

Distributed
processing not

supported, stable
connectivity

demand, full data
transmission

[20] 2024 CNN + LSTM +
GRU Centralized Edge-IIoTset

High accuracy in
complex attack

detection, integrated
spatiotemporal

architecture

Lack of lightweight
or optimized
architecture,

dependence on
strong resources,

full data
transmission

[31] 2024 DNN Distributed Edge-IIoTset

Privacy, evaluation in
three classification

scenarios (2, 6, and 15
classes)

Lack of lightweight
or optimized
architecture,

dependence on
strong resources

[27] 2025 ML – classical
ensemble Centralized

Edge-IIoTset
(DDoS

scenarios)

Extremely high
accuracy, regular

ensemble comparison
to basic models,
balanced classes

(SMOTE)

Distributed
processing not

supported,
dependence on

strong resources,
full data

transmission,
DDoS scenarios

only

[28] 2025 Classical ML +
hybrid FS Centralized

UNSW-NB15 ،
CIC-IDS2017,

ToN-IoT,
Edge-IIoTset

High accuracy, novel
method for feature

selection

Distributed
processing not

supported,
dependence on

strong resources,
full data

transmission,
privacy attack
scenarios only

3. Problem Statement

Dew computing is the closest layer to the data generation sources (sensors and actuators) and
plays a key role in real-time processing and decreasing computational dependence on the
Internet [3,4]. However, the intrinsic characteristics of the dew layer, including limited
computational resources, low bandwidth, unstable connectivity, and major geographical
distribution, expose dew computing to growing security threats [5,7]. In this respect, an
intrusion detection system with three simultaneous key characteristics, i.e., lightweight
architecture, lightweight computations, and distributed processing, remains to be developed to
detect threats locally in real-time and prevent their propagation in multi-layer architectures
without raw data transmission to the upper layers. In this study, lightweight architecture is
assessed in terms of (i) the number of trainable parameters, (ii) the final model size, and (iii)
the inference time, which together indicate whether the model can be practically deployed on
dew-layer machines with constrained resources. In addition, lightweight computations refer to
limiting both the local processing cost and the communication overhead in federated learning,
characterized by (i) a bounded runtime and memory footprint during local updates and
aggregation per communication round, and (ii) reduced model-update traffic per

communication round, compared with centralized raw traffic data transfer and heavier
federated designs. These criteria are later quantified and reported in the experimental section.
A review of the literature shows that earlier works mostly did not effectively address such
challenges in dew computing settings since:

• They mainly focused on cloud-based systems, incompatible with limited resources and
real-time requirements in dew and fog layers [32,33].

• They employed deep learning frameworks with heavy architectures requiring high
computational power and incompatibility with dew nodes [34–36].

• In a number of federated approaches (e.g., Popoolar et al. [31]), the processing and
communication overheads increased internal bandwidth consumption and latency,
which is inconsistent with the functional philosophy of dew computing [37–39].

• Industrial data are imbalanced and non-numerical in practice and contain missing or
redundant points, diminishing performance in conventional methods [40–43].

The negligence of such challenges may turn the dew layer into a critical disadvantage in the
security chain of the IoT as the compromise of dew nodes may propagate to upper layers,
corrupt the basic data, and disturb high-level decision-making [10,44]. Moreover, the lack of
an effective defense mechanism can facilitate major attacks, such as DDoS, malware, and
injection attacks. Three approaches can be adopted in order to cope with these challenges:

(1) Development of lightweight models that can be implemented in dew nodes in order to
decrease computational resource consumption and maintain efficiency in limited-
resource settings [45–47].

(2) Utilization of smart distributed architectures to balance loads and boost resilience,
focused on collaboration between the nodes and computational layers to improve
scalability and reduce points of failure [33,48–50].

(3) Federated learning is a novel approach providing a combination of the two above ideas:
lightweighting computations at the local level and node collaboration without a need
for raw data exchange [30,31,51]. This prevents direct data transmission and, therefore,
minimizes the risk of information leakage. However, many methods in the federated
learning realm encounter challenges such as high communication overhead, delayed
convergence, and limited compatibility with weaker nodes in low-resource settings
[37,52,53]. As a result, it is essential to develop optimized and lightweight versions of
federated learning for fog and dew layers.

This study focuses on designing a lightweight federated intrusion detection system based on
1D-CNNs to detect threats at the dew layer without transmitting raw data and maintain stable
learning under variable communication conditions. The goal is to develop a fully dew-layer
federated IDS framework that ensures the minimum communication overhead, a short training
time, and high accuracy in real-life industrial settings.

4. Contributions of the Proposed Model

This study proposes a novel and lightweight framework for intrusion detection in dew
computing settings focused on leveraging the capabilities of 1D-CNNS in extracting temporal
and statistical patterns and the advantages of federated learning in minimizing raw data
exchange and protecting data privacy. The main novelty of this study lies in devising a shallow
and localized model based on a single 1D convolutional layer that is particularly tailored for
limited resources and unstable connectivity. In contrast to earlier methods that transmitted data
to the central server with major communication loads and security risks, the proposed
framework shows higher compatibility with limited hardware as it includes merely model
parameters and has a lightweight design. In addition, compared to methods based on heavy
networks, such as deep belief networks (DBNs) or classical architectures, such as a multilayer

perceptron (MLP), the proposed model leverages local filters and low-complexity
convolutions, enabling the accurate extraction of attack patterns at low computational costs.
The evaluation of three independent classification scenarios (binary, six-class, and fifteen-
class) based on Edge-IIoTset, which is structurally complex and homogeneous in terms of
labeling, represents another advantage of the proposed framework [21]. The utilization of
federated learning in these scenarios with the proposed model enables a comprehensive
evaluation of the model under real-life conditions. Overall, the proposed method not only
significantly decreases bandwidth consumption and eliminates raw data transmission but also
meets the security requirements, resource limitations, and functional requirements in the dew
computing layer. Furthermore, the proposed model maintains a lightweight design without
compromising detection quality, and provides a robust balance between efficiency and
effectiveness compared with prior heavier deep architectures on Edge-IIoTset, such as the
CNN+LSTM model in [19] and the CNN+LSTM+GRU model in [20].

5. The Proposed Model: Technical Discussion

Conventional ML training techniques are either dependent on the upper layers (e.g., fog or
cloud) or are incompatible with dew layer limitations due to communication overheads and
high latency, representing a major challenge. Therefore, it is crucial to develop a model that
enables distributed and lightweight training performed fully in the dew layer without a
dependence on the upper infrastructures. Thus, this study developed a framework based on the
fully dew-layer federated learning architecture where both the aggregation server and all nodes
are deployed in the dew layer. This structure is inspired by the single-super-hybrid-peer (SSHP)
model in peer-to-peer (P2P) networks [4]. In this setup, a central node with effective super-
peer processing serves as the federated aggregation server, collects model parameters from the
other nodes, and redistributes the updated version, while the other nodes (hybrid peers)
implement localized data training (Fig. 1).
The main advantage of this approach is that the training process can be fully performed in the
dew layer or even offline with no dependence on the upper layers (fog or cloud). This
substantially decreases latency, bandwidth consumption, and connection dependence. In this
architecture, the dew servers typically include personal computers (PCs), workstations, or local
organizational servers that are deployed in user sites and are equipped with sufficient
processing, storage, and software resources to execute programs [4]. This study assumes that
such servers have no energy consumption constraints and can perform ML computations with
no concerns regarding power consumption.

Fig. 1. Proposed fully dew-layer federated learning architecture

To adapt to the hardware limitations of dew servers, a lightweight model was designed and
evaluated based on a single 1D convolutional layer (Conv1D). The design process included
data preprocessing, 1D-CNN architecture development, and implementation in centralized and
federated settings. First, the model was executed in a centralized setting to provide a benchmark
for performance evaluation so that the results could be compared to federated learning results
and earlier works. This study mainly focused on deploying the model in the federated learning
setting, in which an effective aggregation algorithm would be chosen for each classification
scenario based on multi-objective optimization, i.e., F1-score (macro), communication cost,
and convergence rate. In addition, fifteen independent scenarios were designed and simulated
to comprehensively evaluate model performance and measure the sensitivity of the learning
process to key factors; the number of nodes, participation rate, and the number of training
rounds were altered to systematically evaluate the contribution of each parameter to the
ultimate performance of the model.
5.1. Centralized learning
The training process was performed in a centralized setting. Fig. 2 depicts a flowchart of the
phases, from data preparation to ultimate model training.

Fig. 2. Flowchart of centralized learning with feature selection and hyperparameter tuning in
1D-CNN

I. Loading the DNN-Edge-IIoTset
The DNN-Edge-IIoTset, including raw data of normal traffic and various attacks in the IIoT,
was loaded [21]. It contains 1,909,671 records with 61 features and was selected in light of its
comprehensive features, diverse attacks, and compatibility with federated learning scenarios
and dew computing settings. Table 2 lists the main features in the DNN-Edge-IIoTset.

Table 2. Main feature categories in the Edge-IIoTset
Category Example Features Description

Flow-based Flow Duration, Total Packets Basic traffic volume over each flow
Time-based Inter-arrival Time Mean, Flow Start Time Temporal characteristics of packet

streams
Statistical Avg. Packet Size, Std. Dev. of Length Distribution and variability of packet

sizes
Protocol/Flags SYN Flag, ACK Flag, Window Size TCP/IP protocol behavior

System/Behavioral Alert Count, Header Length System-level or behavioral indicators

II. Data analysis
The data quality and structure of the DNN-Edge-IIoTset were analyzed. The distribution of
samples in various classes was evaluated to identify the balance between normal data and
attacks. Then, the type of data in each column was investigated to separate the numerical
columns from textual and class columns and determine whether they needed to be coded. The
missing points, duplicate records, and constant columns were assessed to identify low-quality
data. This directly copes with a challenge highlighted in the problem statement, i.e., imbalanced
and noisy industrial data. Identifying and addressing such challenges before the processing
stage helps avoid training the model based on incomplete or biased data and enhances the
quality of input features in the next stages.
III. Data encoding
Once the data of the Edge-IIoTset had been analyzed, textual and non-categorical features were
converted into a numerical format so that they could be processed by the model. Two common
techniques, i.e., label encoding and one-hot encoding, were used for this purpose [54,55]. The
former maps each textual value onto a unique numerical label in the range of 0 to x (x=number
of features – 1). This is an effective approach for compositional data or data with limited values,
even though a false order may be induced in nominal data. The latter, on the other hand,
changes values into a binary vector with elements of 0 or 1, which is efficient for nominal
protocols and fields since it does not induce false order dependence.
This phase is crucial as industrial data often contains heterogeneous values, e.g., protocols,
addresses, and textual identifiers, whose direct utilization would lead to errors or reduced
model accuracy. The combined utilization of label and one-hot encoding techniques enables a
uniform and significant data representation and handles the challenge of non-numerical and
heterogeneous data in industrial settings [56].
IV. Data preprocessing
The data were preprocessed to ensure input quality. Duplicate records were eliminated by
detecting entirely identical rows while excluding missing points (NaNs). To detect constant
columns or columns of similar patterns, the content of the columns was evaluated through MD5
hash comparisons, excluding non-distinct columns. Furthermore, non-useful columns, e.g., IP
addresses and pack schedules, were excluded since they had no analytical value for model
training. This eliminated noise and incompatibility from the data and enabled more accurate
model training in the next stages.
V. Dataset split into training, validation, and testing subsets
The dataset was split into a training subset (70%), a validation subset (10%), and a testing
subset (20%) to ensure a proper balance between training efficiency, hyperparameter tuning,
and final evaluation. This ratio follows the recommendation of Géron [56], which provides a
well-established guideline for maintaining representativeness while preventing data leakage.
The training data were used to learn model parameters, the validation data were employed to
tune hyperparameters and prevent overfitting, and the testing data were utilized to evaluate the
model’s generalization capability to unseen data.

VI. Standardization
The features were standardized using Standard Scaler to ensure a mean of 0 and a standard
deviation of 1. Standardization was applied to merely the testing data, and the same scaling
was implemented on the validation and testing data to prevent information leakage. The
standardization phase is crucial to address the scale heterogeneity of industrial data since such
data are obtained from various sources and sensors with various numerical ranges. Géron [56]
held that feature scaling prevents biases toward variables of larger scales and maintains model
accuracy and stability under operational conditions.
VII. MI
This study used the MI method for feature selection. MI measures the relative importance of
each feature by evaluating its dependence on the output label [57]. In this study, MI was
estimated using a nonparametric k-nearest neighbor entropy estimator based on neighbor
distances, which is suitable for continuous variables and mixed discrete–continuous features
[58,59]. The optimal number of features K was set through incremental search [60]. This
process excludes insignificant features and reduces data dimensionality, tackling two key
challenges in IIoT and dew computing: (1) limited computational and storage resources and
(2) complexity of multidimensional data, which may lead to overfitting. As a result, the final
model would be more efficient, faster, and more stable, and could be more effectively
implemented in the dew layer.
VIII: Hyperparameter tuning
The hyperparameters were tuned using a grid search and five-fold cross-validation on the
testing data. This would ensure the selection of optimal values for the model parameters and
address the performance optimization challenge in the dew setting with computational
limitations. The optimal tuning of hyperparameters boosts model accuracy and speed and
decreases resource consumption, while cross-validation evaluates performance stability in
various data scenarios and minimizes the risk of overfitting.
IX. Lightweight 1D-CNN
The model proposed in this study is a simplified and optimized one-dimensional convolutional
neural network (1D-CNN) designed to achieve maximum efficiency under the resource
constraints of dew computing environments. As shown in Fig. 3, the proposed architecture
comprises a linear and efficient processing path, where the feature vector of each network flow
(variables such as the pack exchange rate, flow length, pack size, number of ports, and protocol
flags) with a length of L (number of features selected) and input channel C𝑖𝑖𝑖𝑖 = 1 is fed as a 1D
sequence to the Conv1D layer. The input channel determines that each record is represented as
solely a single-channel vector of features (unlike multidimensional data of multiple channels).
The convolution operation is applied to the feature axis to identify local patterns and short-
range relationships between them. The network security data in the Edge-IIoTset, which have
a vector and sequential format, are used in a numerical and structured form for learning.
In contrast to earlier models in the literature with multiple convolutional layers with heavy
combinations (such as a CNN+LSTM+GRU model [20]), the proposed architecture comprises
a single Conv1D layer. The number of parameters in the Conv1D layer is calculated as:

#𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶1𝐷𝐷 = 𝐹𝐹(𝐾𝐾 × 𝐶𝐶𝑖𝑖𝑖𝑖 + 1) (1)

where F is the number of filters in the convolutional layer, K is the kernel size to cover the
sequence of network flow features and identify local patterns, and 𝐶𝐶𝑖𝑖𝑖𝑖 is the number of input
channels (i.e., the single-channel feature vector of each network flow in the Edge-IIoTset).
Furthermore, the parameters of the fully connected (dense) layer are written as:

#𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 𝐻𝐻𝑖𝑖𝑖𝑖 × 𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜 + 𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜 (2)

where 𝐻𝐻𝑖𝑖𝑖𝑖 is the number of input neurons in the dense layer (the flattened output of the
convolution layer), and 𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜 is the number of output neurons (i.e., the number of classes).

Fig. 3. The Proposed 1D-CNN Architecture

As a result, the total number of parameters in the proposed model is obtained as:

#𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = #𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶1𝐷𝐷 + #𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 (3)
This variable increases exponentially in multilayer models, requiring further memory and
computational power. In contrast, a single Conv1D layer, a small hidden dense layer, and an
output dense layer ensure that the total number of parameters remains in a limited range. This
allows for implementing the model in low-resource dew servers and, simultaneously, helps use
the memory more efficiently through sparse interactions and parameter sharing in the
convolution layer [61].
Regarding time complexity, the main operation in Conv1D is of order 𝑂𝑂(𝐹𝐹 × 𝐾𝐾 × 𝐶𝐶𝑖𝑖𝑖𝑖 × 𝐿𝐿),
where L denotes the length of the input feature vector (the number of features selected for each
network flow). As the proposed architecture has a single-channel input (𝐶𝐶𝑖𝑖𝑖𝑖 = 1) and a short
input feature vector (10-40, depending on the scenario), the computational cost of the Conv1D
layer remains remarkably low. The complexity of the fully connected (dense) layer is of order
𝑂𝑂(𝐻𝐻𝑖𝑖𝑖𝑖 × 𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜), leading to a small computational overhead due to the small number of classes
and small flattened output. Therefore, the total time complexity of the model remains at the
linear level, unlike deeper or combined models (CNN+LSTM/GRU) with exponentially
growing time complexity.
From a modeling capacity perspective, the Edge-IIoTset data mainly comprise short-term and
repetitive local patterns, as with sudden increases in the packet rates in DDoS attacks or
abnormal sequences of TCP flags in scanning attacks. However, some attack types such as
MitM do not always manifest through strong short-term statistical deviations. MitM attacks
typically involve traffic interception, modification, or replay, which may span longer
interaction sequences and exhibit weaker local anomalies at the flow level. In the Edge-IIoTset,
MitM samples are relatively limited and are mainly represented through aggregated flow
features, which restricts the diversity of observable MitM behaviors.

The Conv1D layer with small kernels can directly detect such local motifs without deeper
layers to learn complex hierarchies. In addition, recent theoretical research has shown that
CNNs can approximate a broad range of functions through an optimized width (number of
filters) and kernel size, even at low depth [62]. Hence, despite its simplicity, the proposed
architecture can effectively model complex attacks. The incorporation of MaxPooling1D and
Dropout into the proposed architecture also plays a key role in performance improvement.
MaxPooling1D enables more stable and robust representation by reducing the size of
intermediate data and creating invariance to small shifts [63,64]. In this setup, the convolution
axis corresponds to feature sequencing or packet sub-sequencing, and MaxPooling suppresses
the noise of highly variable features and produces more robust representations by reducing
local resolution and selecting dominant responses.
Moreover, Dropout minimizes the overfitting risk and enhances generalizability by addressing
excessive inter-neuron dependencies and decreasing the effective network capacity [63,65].
This is, in particular, essential for the imbalanced Edge-IIoTset, in which frequent classes, e.g.,
DDoS and Scanning, account for a major portion of the data, whereas classes such as Injection
and Malware have a small number of samples. Deep architectures often tend to focus solely on
dominant patterns and neglect minority classes.
The proposed model, however, tackles this challenge by integrating the shallow Conv1D with
MaxPooling and Dropout. MaxPooling highlights distinct features by compressing the
intermediate data and mitigates the dependence on the number of samples, while Dropout
drives the model to utilize a diverse combination of neurons and prevents an excessive focus
on particular patterns of the most frequent classes. Thus, learning is not limited to the majority
classes, and the model can focus on more general and discriminative features, leading to
improved detection rates of rare attacks without a drop in the overall accuracy.
Ultimately, the lightweight and low-depth architecture of the proposed model shortens the
inference path and enables real-time detection. This is crucial in attack scenarios such as DDoS
attacks since the model can detect attacks before the full saturation of the bandwidth or
processor resources. In light of its flexible design, the proposed framework can also be
extended from a binary setting (normal/attack) to multiclass settings (six or fifteen) only by
altering the number of neurons within the output layer and activation function, without major
alterations in the architecture.
This study used the binary cross-entropy (BCE) cost function for the binary scenario and the
sparse categorical cross-entropy (SCCE) cost function for the multiclass scenario. These cost
functions are completely aligned with the nature of problems and the type of labels in the Edge-
IIoTset and improve model performance in several terms. In the binary scenario, the detection
is aimed at realizing whether each sample belongs to the “attack” or “normal traffic” classes.
The output of the final layer is a scalar in the range of [0, 1], which would be obtained from
the sigmoid function and represent the membership likelihood of a given sample in the “attack”
class. In such a case, the BCE cost function is the best alternative for optimization since it
directly compares the predicted likelihood to the real value:

𝐵𝐵𝐵𝐵𝐵𝐵(𝑦𝑦,𝑦𝑦�) = −
1
𝑁𝑁
�[𝑦𝑦𝑖𝑖 log(𝑦𝑦�𝑖𝑖) + (1 − 𝑦𝑦𝑖𝑖) log(1 − 𝑦𝑦�𝑖𝑖)]
𝑁𝑁

𝑖𝑖=1

 (4)

where N is the total number of samples in the Edge-IIoTset before preprocessing, 𝑦𝑦𝑖𝑖 is the real
label of sample i, which is 1 for the attack class and 0 for the normal traffic class, and 𝑦𝑦�𝑖𝑖 is the
predicted membership likelihood of sample i for the attack class.
The logarithmic character of the BCE cost function is a key advantage that ensures a greater
penalty for false predictions in the minority classes (e.g., rare attacks). This is particularly
essential in the imbalanced Edge-IIoTset since the ratio of normal traffic samples to attack

samples is significantly large, and the BCE cost function effectively prevents the negligence of
minority classes in the learning process.
In the multiclass scenarios (six and fifteen classes), the labels are stored as integers rather than
one-hot vectors. Therefore, the SCCE cost function was employed to train the model:

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑦𝑦,𝑦𝑦�) = −
1
𝑁𝑁
� log(𝑦𝑦�𝑖𝑖,𝑦𝑦𝑖𝑖)
𝑁𝑁

𝑖𝑖=1

 (5)

where N is the total number of samples in the Edge-IIoTset before preprocessing, 𝑦𝑦𝑖𝑖 is the
integer label of sample i, and 𝑦𝑦�𝑖𝑖,𝑦𝑦𝑖𝑖 is the predicted membership likelihood of integer class 𝑦𝑦𝑖𝑖,
which is obtained from the output of the softmax function.
Reduced memory consumption and accelerated training represent the first advantage of the
SCCE cost function since it is no longer essential to convert labels into one-hot vectors. This
is a key advantage in the fifteen-class scenario in the limited-source dew setting. The alignment
of SCCE with the output of the softmax function and the generation of significant gradients for
the minority classes represent the second advantage. This, along with the Dropout/Pooling, was
helpful in improving the detection of rare classes in this study. The stability of SCCE in
handling imbalanced data is the third advantage since false predictions for minority classes
(e.g., Injection or Malware) are subject to a larger penalty, boosting the detection rate of rare
attacks without a drop in the overall accuracy of the model in frequent classes.
This study purposefully employed the adaptive moment estimation (ADAM) optimizer to train
the 1D-CNN model. The ADAM algorithm provides a combination of the advantages of the
Momentum and RMSProp models and calculates the learning rate of a parameter based on two
exponential average estimations. The first- and second-order exponential averages are updated
as:
𝑚𝑚𝑡𝑡 = 𝛽𝛽1𝑚𝑚𝑡𝑡−1 + (1 − 𝛽𝛽1)𝑔𝑔𝑡𝑡 (6)
𝑣𝑣𝑡𝑡 = 𝛽𝛽2𝑣𝑣𝑡𝑡−1 + (1 − 𝛽𝛽2)𝑔𝑔𝑡𝑡2 (7)

where 𝑔𝑔𝑡𝑡 denotes the error in detecting network attacks with respect to the weights of the
Conv1D layer and fully connected layer, 𝛽𝛽1 is the reduction factor of first-order exponential
averaging, which is used to smoothen sharp gradient shifts in highly dynamic networks (e.g.,
DDoS attack-induced bursts), 𝛽𝛽2 is the second-order averaging factor, which ensures the
stability and accuracy of weight updates by controlling the variation ranges of features with
heterogeneous scales (e.g., high packet rates versus binary protocol flags), 𝜃𝜃 represents the
weights of the Conv1D filters and dense neurons, which, in practice, represents attacks and
normal traffic versus the network flow feature vector, 𝑚𝑚𝑡𝑡 is the first-order exponential gradient
average, which serves as a stabilizer to update weights such that error variations in stable
features (e.g., packet rate or repetitive protocol flags) are enhanced and the learning path of the
model is facilitated, and 𝑣𝑣𝑡𝑡 is the second-order exponential gradient average and ensures that
the learning rate remains higher for more stable features.
These values are corrected through Eqs. (8) and (9) to eliminate the initial bias, and the weights
are updated based on Eq. (10):
𝑚𝑚�𝑡𝑡 =

𝑚𝑚𝑡𝑡

1 − 𝛽𝛽1𝑡𝑡
 (8)

𝑣𝑣�𝑡𝑡 =
𝑣𝑣𝑡𝑡

1 − 𝛽𝛽2𝑡𝑡
 (9)

𝜃𝜃𝑡𝑡+1 = 𝜃𝜃𝑡𝑡 − 𝛼𝛼
𝑚𝑚�𝑡𝑡

�𝑣𝑣�𝑡𝑡 + 𝜀𝜀
 (10)

where α is the learning rate and plays a crucial role in setting the convergence rate of the model
in dew settings, while ϵ is a small quantity to avoid division by zero and particularly prevents

computational errors when gradients become extremely small in minority data (e.g., rare
Injection and Malware attacks).
The Momentum component prevents extreme variations in the learning path based on 𝑚𝑚𝑡𝑡,
while RMSProp regulates the learning rate of each parameter independently based on 𝑣𝑣𝑡𝑡. This
optimizer is essential for the heterogeneous and multidimensional Edge-IIoTset data. The
Edge-IIoTset comprises a variety of features, e.g., packet rates and protocol flags, and the
ADAM algorithm takes more optimal steps for weight updating by automatically regulating
the learning rate. Since the Edge-IIoTset is highly imbalanced, ADAM regulates the weights
of minority classes (e.g., Injection and Malware attacks) more effectively in a shorter time
without a drop in model accuracy for frequent classes. Thus, the model enjoys a balanced
capability of learning for all classes.
Furthermore, in dew computing settings with limited computational resources and training
time, ADAM decreases energy consumption and shortens the computational time due to its
high convergence rate and lower demand for training iterations (epochs). Exponential gradient
averaging is another characteristic of the ADAM algorithm, which provides robustness to the
noise and variability of attack patterns and prevents trapping in local minima. Most
importantly, ADAM’s dynamic and automatic regulation of the learning rate eliminates the
need for an extensive manual search to find the optimal value, which, in turn, accelerates and
facilitates the training process.
5.2. Federated learning
Fig. 4 illustrates the flowchart of federated learning in the dew layer, organized into the client
side (C) and server side (S). The former implements local processing and training on the data
of each dew node, while the latter is responsible for coordination, aggregating updates, and
managing learning cycles between nodes.
The client-side federated learning process begins with Stage C(I), in which the Edge-IIoTset is
split as independent and identically distributed (IID) local shards between dew nodes so that
each node contains data of the same statistical distribution. Stage C(II) performs local
preprocessing, including manual data coding through label encoding and one-hot encoding,
eliminating constant columns, excluding duplicate records, and managing missing values
(NaNs). Stage C(III) splits the local data of each node into a training subset (70%), a testing
subset (20%), and a validation subset (10%) to ensure that the model can be generalized to new
data [56]. Stage (IV) standardizes the data through Standard-Scaler by calculating the scaling
parameters merely based on the training data before they are applied to the testing and
validation data. Stage C(V) performs feature selection using the MI approach.
Drawing on gradual searches, it applies the best number of features K, which is previously
optimized for each problem in centralized learning, to each node. Stage C(VI) trains the
lightweight 1D-CNN model for a given number of epochs (determined through Bayesian
optimization based on each classification problem) on local data. Finally, in Stage C(VII), each
node sends only updated gradients or weights to the aggregation server rather than transmitting
raw data.
The server side in federated learning is responsible for coordinating and aggregating the
knowledge of local models and plays a key role in the effective and efficient convergence of
the final model. The hyper-parameters of the local models are optimized through Bayesian
optimization before beginning distributed training in order to ensure that each node starts
training with the most effective configuration.
This is also theoretically justifiable since negligence to optimize hyper-parameters at the local
level in distributed architectures may lead to decelerated convergence, increased variance
between local models, and reduced global model quality. The server-side stages of federated
learning are described below.

Fig. 4. Flowchart of federated learning in the dew layer, including local processing and

training on the client side and aggregation and evaluation on the server side

S(I) Initialization of the global model
The global model (i.e., lightweight 1D-CNN) is generated and initialized in Stage S(I). The
initial parameters of the model, including the weights and biases, are randomly initialized so
that the learning process can begin without a bias toward specific data. The initialized global
model is transferred to the nodes to begin local training and distributed aggregation.
S(II): Selection of an aggregation algorithm for each task
Stage S(II) is intended to select the optimal aggregation algorithm for each classification
problem. Seven well-known aggregation algorithms in federated learning, i.e., FedAvg [66],
FedAvgM [67], FedProx, FedAdam, FedOpt [68], FedYogi [69], and FedMedian [70], were

executed under the same test conditions using the same local model (lightweight 1D-CNN).
The configuration parameters, including the number of nodes (N), participation rate (C), the
number of training rounds (R), and data settings, remained unchanged to perform evaluation
based on differences in the aggregation. These seven aggregation algorithms were selected
since they cover a wide range of approaches in federated learning, including FedAvg as a basic
algorithm, FedAvgM as a momentum-based algorithm, FedMedian with robustness to outlier
data, and FedYogi, FedOpt, and FedAdM as adaptive optimization approaches. Thus, the
evaluation represents the most common aggregation algorithms in the literature.
The final aggregation algorithm for each classification problem would be selected based on a
multi-objective analysis that simultaneously met three major criteria: F1-score (macro),
communication cost, and the number of rounds before convergence. As no algorithm was
superior for all three criteria, decision-making was performed based on Pareto optimality; the
algorithm with the most effective trade-off between F1-Macro, connectivity efficiency, and
convergence rate, would be selected in each classification problem. Therefore, FedOpt was
selected for the binary scenario, FedAvgM was utilized for the six-class scenario, and
FedMedian was employed for the fifteen-class scenario. Overall, aggregation in federated
learning is formulated as:

𝑤𝑤𝑡𝑡+1 = �
𝑛𝑛𝑘𝑘
𝑛𝑛

𝐾𝐾

𝑘𝑘=1

𝑤𝑤𝑡𝑡
𝑘𝑘 (11)

where K is the number of dew nodes participating in training round t, which is set based on the
predefined participation rate in the simulations, 𝑤𝑤𝑡𝑡𝑘𝑘 denotes the weights of local model k trained
on the specific split of the Edge-IIoTset in the same node, 𝑛𝑛𝑘𝑘 is the number of the training
samples of node k, n is the total number of samples in all nodes in the same round, and 𝑤𝑤𝑡𝑡+1
represents the weights of the global model after aggregation (lightweight 1D-CNN model
designed for intrusion detection in this study).
The aggregation algorithms differ from each other in calculating and updating 𝑤𝑤𝑡𝑡+1 and/or
implementing constraints and specific optimizations in the process. The FedOpt algorithm
(selected for the binary scenario) utilizes an adaptive optimizer on the server side that performs
updating as:

𝑤𝑤𝑡𝑡+1 = 𝑤𝑤𝑡𝑡 − 𝜂𝜂𝑠𝑠 ⋅
𝑚𝑚�𝑡𝑡

�𝑣𝑣�𝑡𝑡 + 𝜀𝜀
 (12)

where 𝜂𝜂𝑠𝑠 is the server-side learning rate and controls the updating rate of the global model, 𝑚𝑚�𝑡𝑡
is the first-order exponential gradient average that captures the dominant direction of weight
variations during training rounds (𝑚𝑚�𝑡𝑡 is calculated using the local weight variations of the dew
nodes with respect to the global model and represents the overall tendency of all nodes in
learning the attack patterns in this study), 𝑣𝑣�𝑡𝑡 is the second-order exponential gradient average
that controls the magnitude and variation of gradients (it ensures that the learning rate for noisy
or variable features, such as ports or communication delays, reduces and remains larger for
more stable features, such as the flow length or protocol flags), and 𝜀𝜀 is an extremely small
constant added to the denominator to stabilize the training process (it particularly prevents an
excessive learning rate increment and model divergence when some features have nearly-zero
gradients).
The FedOpt aggregation algorithm is advantageous as it ensures stable training and raises the
convergence rate by combining these two components. This is important in the binary scenario
of the Edge-IIoTset since the model should balance the highly imbalanced data (in which
normal traffic dominates attack samples). In such a case, 𝑚𝑚�𝑡𝑡 prevents extreme bias variations
in the updates, while 𝑣𝑣�𝑡𝑡 moderates the learning rate under noisy features and enables the
proposed lightweight 1D-CNN model to converge more robustly in a shorter time [68].

The FedAvgM algorithm (selected for the six-class scenario) is a variant of FedAvg that uses
the server momentum. It updates the model weights as:
Δ𝑡𝑡 = 𝛽𝛽Δ𝑡𝑡−1 + (𝑤𝑤𝑡𝑡 − 𝑤𝑤𝑡𝑡−1)

(13)
𝑤𝑤𝑡𝑡+1 = 𝑤𝑤𝑡𝑡 + Δ𝑡𝑡

where 𝛽𝛽 is a coefficient determining the dependence of the current variations on the previous
variations (it determines the extent to which the super-peer in the dew layer uses the shift
direction of model weights in the previous weight; this is particularly vital in the Edge-IIoTset
with a multiclass, imbalanced distribution since the momentum decreases heterogeneous data-
induced variations between dew nodes), Δ𝑡𝑡 is a linear combination of the previous and current
weight variations (it reflects the averaged shift direction of 1D-CNN weights obtained from
the training of dew nodes on different subsets of the Edge-IIoTset; this vector enables the global
model to have a more robust and smoother path over time rather than following merely
instantaneous node variations), Δ𝑡𝑡−1 is the accumulated weight variation in the previous round,
which reflects the learning trend in round t-1 and serves as a short-term memory in weight
updating, 𝑤𝑤𝑡𝑡 denotes the global model weights at the beginning of round t (the weights of the
lightweight 1D-CNN model stored in the dew super-peer and can be readily aggregated with
the node variations, and 𝑤𝑤𝑡𝑡−1 represents the global model weights at the beginning of round t-
1, which represents the previous version of 1D-CNN weights before aggregation in round t-
1.The weight updating path is not merely dependent on the instantaneous variations in this
mechanism as the overall gradient orientation in the previous rounds is also incorporated. This
approach is particularly essential for Edge-IIoTset multiclass scenarios since the data
distribution between dew nodes is heterogeneous, and the global model weights may have
sharp variations without the momentum. The FedAvgM algorithm mitigates such instability
and enables more rapid and robust convergence for the 1D-CNN model in the dew setting [67].
The FedMedian algorithm (selected for the fifteen-class scenario) applies the coordinate-wise
median rather than weight averaging for aggregation:
𝑤𝑤𝑗𝑗
𝑡𝑡+1 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑤𝑤1,𝑗𝑗

𝑡𝑡 ,𝑤𝑤2,𝑗𝑗
𝑡𝑡 , … ,𝑤𝑤𝐾𝐾,𝑗𝑗

𝑡𝑡) (14)
where j is the index of each 1D-CNN parameter (e.g., Conv1D filter weights or dense output
neurons), 𝑤𝑤𝐾𝐾,𝑗𝑗

𝑡𝑡 is value j of the local model weight of node k in round t (obtained from local
component training via the Edge-IIoTset in each dew node), and 𝑤𝑤𝑗𝑗𝑡𝑡+1 is value j of the global
model weight after aggregation in the dew super-peer (which forms the updated version of the
model for the next training round).
While FedAvg considers the weighted averages, FedMedian selects the coordinate-wise
median and is more robust to inconsistent nodes and/or outlier data. This is, in particular,
important in the fifteen-class scenario since the Edge-IIoTset data have a heterogeneous
distribution, and some classes comprise many fewer samples. Thus, FedMedian further
stabilizes the learning path of the global model and prevents the excessive effects of nodes with
non-representative or noisy data [70].
S(III): Broadcasting of the global model
The initialized global model coupled with the optimal aggregation algorithm for the given
scenario is sent to a set of nodes at the beginning of each training round. The number of these
nodes is determined based on the participation rate C, with only a fraction of the total nodes
being selected and activated in each round. This mechanism reduces communication costs and
computational resource consumption in the dew layer and ensures the stability of the system
under conditions where not all nodes are simultaneously available. Random node selection in
each round maintains randomization during distributed data sampling and minimizes the
overfitting risk in a fixed set of nodes, enabling the global model to have a more effective
representation of the total data distribution. This approach also provides excellent flexibility in

IIoT and dew computing settings, where a number of nodes may not be available due to
resource limitations or a lack of connectivity.
S(IV): Reception of the client updates
Once each local training round in the selected nodes has been completed, model updates
(including weights or gradients) are transmitted to the server. The server integrates these
updates based on the aggregation algorithm (FedOpt, FedAvgM, or FedMedian) to generate a
new version of the global model. This ensures that the knowledge extracted from the local data
of each node is incorporated into the global model, and the effects of inconsistent or noisy data
are minimized. This phase is essential in the IIoT and dew computing settings as data are highly
heterogeneous and decentralized, and the quality of updates transmitted by nodes may vary due
to limited resources or unstable connectivity.
S(V): Repetition for R rounds
The federated learning cycle, including the transmission of the global model to the nodes, local
training, and receiving and aggregating updates, is iteratively executed for a certain number of
rounds until the convergence criterion is met. This study would discontinue the training process
if no significant improvement in model performance was observed over a number of
consecutive rounds based on error metrics. This prevents ineffective training rounds and saves
computational and communication resources within limited-resource settings, such as dew
computing.
S(VI): Evaluation of the global model
Once aggregation and convergence have been completed, the trained global model is finally
evaluated on the global testing dataset, which has not been used in the training process. The
evaluation data are stored independently in order to ensure that the results reflect the
generalizability of the global model to new and unseen data.
S(VII): Execution of simulations
Several simulation configurations are implemented to systematically evaluate the effects of
each parameter on the federated learning process to identify optimal configurations and
enhance model performance. Three key parameters are systematically altered during the
federated learning process [66,71,72]:

(I) Number of nodes (N): It determines the number of local nodes that participate in
the training process simultaneously. This parameter reflects the network scale and
data heterogeneity level [66,72].

(II) Participation rate (C): It is the ratio of nodes selected in each round to the total nodes
and simulates the unavailability or temporal disconnection of some nodes. This
parameter affects data diversity and convergence rate [66,71].

(III) Number of training rounds (R): It determines the number of model uplinks and
downlinks between the nodes and central server and directly relates to resource
limitations in the dew layer [71,72].

A total of fifteen simulation configurations with different conditions were devised to assess the
relative effects of each parameter both independently and in interaction with the other
parameters. The results of these simulations would be compared based on the evaluation
criteria (i.e., F1-macro, communication cost, and convergence rate), extracting optimization
policies to select the optimal configuration for each scenario (Section 6).
This study would select two different approaches to hyperparameter optimization within
centralized learning and federated learning settings based on both theoretical and practical
aspects. In centralized learning settings, data are stored in an integrated form, and model
execution solely includes local training. Hence, the computational time and cost of testing
various combinations of hyperparameters are lower, and grid search can be performed. This
approach completely evaluates a discrete space of possible values and ensures that the global
optimum is identified in this space. The time complexity of this grid search is written as:

𝑂𝑂(�𝑛𝑛𝑖𝑖

𝑘𝑘

𝑖𝑖=1

) (15)

where 𝑛𝑛𝑖𝑖 is the number of tested values for hyperparameter i, whereas k is the number of
hyperparameters. This cost is acceptable when 𝑛𝑛𝑖𝑖 is small and the data are centralized. In
federated learning, on the other hand, data are distributed between several nodes, and the
evaluation of a configuration includes multiple stages of model transmission and reception
between nodes and the server. The evaluation cost in such settings is written as:
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶evaluation (𝑓𝑓) = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (16)

The total cost of an evaluation comprises a computational cost and a communication cost. In
federated learning, the communication cost of repetitive transmissions of model weights
between nodes and the server is significantly dominant since it grows proportional to the
number of model parameters × the number of participating nodes × the number of training
rounds, while the computational cost of each node is limited to local processing on a subset of
data. This difference between the two cost components is even greater in the dew layer, in
which the bandwidth and network stability are limited.
Research has shown that the communication overhead is the primary bottleneck in federated
learning [53]. To address this challenge, this study employed Bayesian optimization in the
federated learning process by implementing the structured Parzen estimator (TPE) in the
Optuna framework. While Gaussian process-based methods utilize acquisition functions, e.g.,
expected improvement (EI) or upper confidence bound (UCB), the TPE algorithm guides the
search by directly modeling the conditional probability distribution of the objective function.
In this method, two independent conditional distributions are defined:
𝑙𝑙(𝑥𝑥) = 𝑝𝑝(𝑥𝑥|𝑦𝑦 < 𝑦𝑦∗) (17)
𝑔𝑔(𝑥𝑥) = 𝑝𝑝(𝑥𝑥|𝑦𝑦 ≥ 𝑦𝑦∗) (18)

where x is the hyperparameter vector (e.g., learning rate, number of filters, or kernel size in the
proposed 1D-CNN), y is the objective function value, which is assumed to correspond to model
performance indices in federated learning (validation dataset accuracy), and 𝑦𝑦∗ is a
performance threshold (set as a quantile of the previous results).
The objective is to maximize the 𝑙𝑙(𝑥𝑥)/g(x) ratio in order to select new values of x with a higher
likelihood of corresponding to the zone or higher performance. The significant drop in the
number of model executions and the focus on promising zones in the search space are major
advantages of this approach in federated learning. This remarkably saves time, decreases the
communication cost, and improves efficiency in hyperparameter selection, ensuring model
convergence under limited-resource conditions.

6. Simulation Results and Technical Discussion

This section discusses the results of the proposed model in the centralized learning and
federated learning settings. The hardware and software of the simulation system, statistical data
distribution, performance evaluation criteria (accuracy, precision, recall, and F1-score),
inference time, communication cost, and the number of convergence rounds are discussed.
Finally, the hyperparameter configuration is described, followed by a discussion of the
qualitative and quantitative results of each scenario.
6.1. Hardware and software configuration of the simulation system
The simulations were performed under a fixed set of controlled settings using an Asus ROG
Zephyrus G14 system with 32 GB of RAM, an NVIDIA GeForce RTX 2060 Max-Q GPU (6
GB), and an estimated compute throughput of 7.5 TFLOPS. These hardware and software

details are reported to support reproducibility and facilitate independent verification. Table 3
summarizes the software configuration.

Table 3. Software configuration in the simulations
Library, Tool, or

Programming
Language

Python TensorFlow Flower
(Flwr) Matplotlib Scikit-

Learn Numpy Pandas Optuna

Version 3.10 2.19.0 1.18.0 3.9.4 1.6.1 2.1.3 2.2.3 4.4.0

6.2. Statistical data distribution
Three classification scenarios, including binary, six-class, and fifteen-class, were analyzed.
The data were split using a stratified split technique to maintain the same ratios of samples in
the classes within the training, validation, and test subsets. Table 4 shows the statistical
distribution of the data.

Table 4. Distribution of classes and sub-classes in the Edge-IIoTset after data preprocessing

Category Subcategory Class Records Percentages (%)
Normal Normal Normal 1399624 72.65%

Attack

DDoS

DDoS_UDP 121567 6.31%
DDoS_ICMP 67939 3.53%
DDoS_TCP 50062 2.60%

DDoS_HTTP 48544 2.52%

Injection
SQL_Injection 50826 2.64%

Uploading 36957 1.92%
XSS 15068 0.78%

Scanning
Vulnerability_Scanner 50026 2.60%

Port_Scanning 19977 1.04%
Fingerprinting 853 0.04%

Malware
Password 49933 2.59%
Backdoor 24026 1.25%

Ransomware 9689 0.50%
MITM MITM 358 0.02%

Total 1945449 100%

6.3. Evaluation criteria
Macro and weighted accuracy, precision, recall, and F1-score were employed to evaluate model
performance in both the centralized and federated learning settings. The number of
convergence rounds, communication cost, and inference time were also incorporated as
additional criteria for federated learning.
6.3.1. Accuracy
Accuracy is defined as the ratio of true predictions to total samples and serves as a measure of
model efficiency in classification:

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹
 (19)

where TP, TN, FP, and FN denote true positives, true negatives, false positives, and false
negatives, respectively. In multiclass systems, accuracy is formulated as the average true
predictions in all classes:

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
1
𝑁𝑁
�1 {𝑦𝑦�𝑖𝑖 = 𝑦𝑦𝑖𝑖}
𝑁𝑁

𝑖𝑖=1

 (20)

where N is the total number of samples, 𝑦𝑦𝑖𝑖 is the real label, 𝑦𝑦�𝑖𝑖 is the predicted label, and the
characteristic function 1 {𝑦𝑦�𝑖𝑖 = 𝑦𝑦𝑖𝑖} is 1 for correct predictions and 0 for incorrect ones.

6.3.2. Precision
Precision is the ratio of true positives to the total positives:

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 (21)

In multiclass scenarios, precision is calculated using two approaches:
• Macro-precision: It is the non-weighted average precision of all classes given by:

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝐶𝐶
�

𝑇𝑇𝑃𝑃𝑐𝑐
𝑇𝑇𝑃𝑃𝑐𝑐 + 𝐹𝐹𝑃𝑃𝑐𝑐

𝐶𝐶

𝑐𝑐=1

 (22)

where C is the total number of classes, TPc is the number of true positives in class c,
and FPc is the number of false positives in class c.

• Weighted precision: It is the weighted average of the precision scores of the classes
based on the relative frequency of each class:

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡𝑡𝑡𝑡𝑡 = �
𝑛𝑛𝑐𝑐
𝑁𝑁

𝐶𝐶

𝑐𝑐=1

∙
𝑇𝑇𝑃𝑃𝑐𝑐

(𝑇𝑇𝑃𝑃𝑐𝑐 + 𝐹𝐹𝑃𝑃𝑐𝑐)
 (23)

where 𝑛𝑛𝑐𝑐 is the number of real samples in class c, while N denotes the total number of
samples.

6.3.3. Recall
Recall measures the efficiency of a model in detecting true positives and is written as:

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 (24)

In multiclass scenarios, recall is calculated through two approaches:
• Macro-recall: It is the non-weighted average recall score of all classes:

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝐶𝐶
�

𝑇𝑇𝑃𝑃𝑐𝑐
𝑇𝑇𝑃𝑃𝑐𝑐 + 𝐹𝐹𝑁𝑁𝑐𝑐

𝐶𝐶

𝑐𝑐=1

 (25)

where FNc denotes the number of false negatives in class c.
• Weighted recall: It is the weighted average recall score of the classes based on the

relative frequency of each class:

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡𝑡𝑡 = �
𝑛𝑛𝑐𝑐
𝑁𝑁
∙

𝑇𝑇𝑃𝑃𝑐𝑐
𝑇𝑇𝑃𝑃𝑐𝑐 + 𝐹𝐹𝑁𝑁𝑐𝑐

𝐶𝐶

𝑐𝑐=1

 (26)

6.3.4. F1-score
The F1-score is a combined criterion defined as the coordinated average of precision and recall
and evaluates the balanced performance of a model in producing true positives and avoiding
false positives:

𝐹𝐹1 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 2 ×
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 × 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

 (27)

In multiclass scenarios, the F1-score is calculated through two approaches:
• Macro-F1: It is the non-weighted F1-score of all classes:

𝐹𝐹1𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝐶𝐶
�

2 ∙ 𝑃𝑃𝑐𝑐 ∙ 𝑅𝑅𝑐𝑐
𝑃𝑃𝑐𝑐 + 𝑅𝑅𝑐𝑐

𝐶𝐶

𝑐𝑐=1

 (28)

where 𝑃𝑃𝑐𝑐 is the precision of class c, while Rc is the recall of class c.
• Weighted F1: It is the weighted average F1-score based on the relative frequency of

each class:

𝐹𝐹1𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡𝑡𝑡 = �
𝑛𝑛𝑐𝑐
𝑁𝑁
∙

2 ∙ 𝑃𝑃𝑐𝑐 ∙ 𝑅𝑅𝑐𝑐
𝑃𝑃𝑐𝑐 + 𝑅𝑅𝑐𝑐

𝐶𝐶

𝑐𝑐=1

 (29)

6.3.5. Specific evaluation criteria in federated learning
Three additional evaluation criteria were incorporated for federated learning, including:

(1) Number of convergence rounds: It denotes the number of rounds required to enable the
central model to converge in terms of the target criterion (i.e., loss). This study defined
loss function reduction as the stopping criterion for model training; the training process
would be discontinued once no improvement occurred in the loss function over a
sequence as large as half the total number of predefined rounds (for example, nine
rounds in eighteen-round training), with the corresponding round being recognized as
the convergence round. It should be noted that a stricter stopping criterion was assumed
in the binary scenario due to the relative simplicity of the system and higher
convergence rate; i.e., training would be discontinued once the loss function did not
improve over five consecutive rounds.

(2) Communication cost: It indicates the total size of data exchanged between the nodes
and the central server during the entire federated learning process and is measured in
MB. In each training round, each participating node transmits its local model to the
server and receives the aggregated model from it. Thus, the communication cost is a
function of the model size, the number of participating nodes in each round, and the
total number of training rounds:
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (𝑀𝑀𝑀𝑀) = 𝑅𝑅 × (𝑁𝑁 × 𝐶𝐶) × 2 × 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (𝑀𝑀𝑀𝑀) (30)

where N is the total number of nodes, C is the participation rate of nodes in each round,
and R is the number of training rounds. A factor of 2 represents uplink+downlink in
each round.

(3) Inference time: It is the average time required to predict each sample in the testing
dataset and is calculated based on well-known standards, e.g., MLPerf [73]:

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 =
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
 (31)

6.4. Hyperparameter configuration in centralized and federated learning
This study tuned hyperparameters through different approaches in the centralized and federated
learning settings. The grid search was employed in centralized learning to find an optimal
combination of hyperparameters (Table 5). Due to the distributed character of data and limited
resources in federated learning, Bayesian optimization and the TPE algorithm were
implemented (Table 6).
In both centralized and federated learning settings, feature selection was performed using the
MI technique based on the optimal number of features K through the incremental search. Table
7 lists the optimal parameters for each classification scenario.

Table 5. Hyperparameter configuration in classification scenarios for centralized learning
Classification

Task Filters Kernel Size Dense Units Dropout Rate Learning Rate Batch Size Epoch
Binary 16 3 32 0.2 0.001 16 6
6-class 128 3 32 0.2 0.0005 64 50

15-class 128 7 128 0.2 0.0001 32 50

Table 6. Hyperparameter configuration in classification scenarios for federated learning
Classification

Task Filters Kernel
Size

Dense
Units

Dropout
Rate Learning Rate Batch

Size
Local
Epoch

Binary 16 3 32 0.2 0.001 16 6
6-class 128 2 32 0.3 0.0005 64 10
15-class 64 2 32 0.2 0.0005 64 10

Table 7. Number of selected features in classification scenarios based on MI

Classification Task 2-class 6-class 15-class
Number of Selected Features (K) 10 40 30

6.5. Centralized learning
The performance of the proposed model was evaluated under the framework of centralized
learning to enable intricate, reliable comparisons. The first goal was to offer a quantitative
baseline for comparison to federated settings and measure the potential drop in accuracy under
distributed conditions so that model efficiency could be assessed, along with the security and
data privacy advantages of federated learning. The second goal was to compare the
performance of the proposed model to well-known methods in the literature in the centralized
setting to demonstrate the superior or comparative performance of the proposed model in terms
of accuracy, computational efficiency, and learning stability. As a result, three classification
scenarios, i.e., binary, six-class, and fifteen-class, were analyzed, reporting the evaluation
criteria for each scenario. Table 8 summarizes the performance of the proposed model in the
three scenarios, suggesting high accuracy and optimal training and testing times with limited
epochs.

Table 8. Model performance in three classification scenarios in centralized learning
Performance Metrics 2-class 6-class 15-class

Test Loss 0.0000 0.0532 0.0625
Test Accuracy 100 97.49 97.01

Epoch 5 50 50
Training Time (s) 793.35 4663.87 8935.29
Testing Time (s) 29.36 10.38 21.85

6.5.1. Binary scenario
The proposed model was found to effectively detect all samples in the binary scenario, yielding
an accuracy, precision, recall, and F1-score of 100% for both the “attack” and “non-traffic”
classes (Table 9).

Table 9. Model performance under the binary scenario in centralized learning
 Precision (%) Recall (%) F1-Score (%) Support

No Intrusion 100 100 100 280115
Intrusion 100 100 100 108975
Accuracy 100 389090

Macro Avg 100 100 100 389090
Weighted Avg 100 100 100 389090

6.5.2. Six-class scenario
The proposed model had an accuracy score of 97.49% in the six-class scenario. According to
Table 10, the precision, recall, and F1-score were maximized to 100% in the normal and MITM
classes. The model also showed excellent performance in the DDoS and Scanning classes,
yielding evaluation criteria above 93%. Despite the relatively low precision score (71.90%),
the model effectively detected the Injection class, with a recall score of 96.04%. The Malware

class was the largest challenge; despite a high precision score of 98.64%, the model showed a
low recall score (60.12%) and a decreased F1-score.

Table 10. Model performance under the six-class scenario in centralized learning
 Precision (%) Recall (%) F1-Score (%) Support

Normal 100 100 100 280115
DDoS 98.03 97.60 97.81 57299

Scanning 94.74 93.73 94.23 14141
Injection 71.90 96.04 82.23 20702
MITM 100 100 100 69

Malware 98.64 60.12 74.70 16764
Accuracy 97.49 389090

Macro Avg 93.88 91.25 91.50 389090
Weighted Avg 97.96 97.49 97.43 389090

6.5.3. Fifteen-class scenario
The proposed model had an overall accuracy score of 97.01 in the fifteen-class scenario. As
shown in Table 11, the model was effective for the Normal, MITM, DDoS-UDP, and DDoS-
ICMP classes, with a precision, recall, and F1-score of 100%. The evaluation criteria were
higher than 92% for many other classes, including Ransomware, DDoS-TCP, Vulnerability-
scanner, and Backdoor. On the other hand, the precision score was relatively low for the
Password, SQL Injection, and Uploading classes, even though the model showed acceptable
recall scores, suggesting that the proposed model can detect the real-life instances of such
attacks. Password and SQL Injection were the most challenging classes, as the F1-score was
calculated to be 62.61% and 69.49%, respectively. While the proposed model demonstrates
stable performance across all attack classes, it is important to note the inherent complexity of
certain intrusion types. Specifically, MitM attacks in the Edge-IIoTset are predominantly
represented by short-term flow-level features. This data limitation constrains the model's ability
to learn the diverse, long-term sequential dependencies typically associated with real-world
MitM behaviors, thus directing the lightweight 1D-CNN to capture local statistical anomalies
rather than deep temporal patterns.

Table 11. Model performance under the fifteen-class scenario in centralized learning
 Precision (%) Recall (%) F1-Score (%) Support

Normal 100 100 100 280115
MITM 100 100 100 69

Uploading 89.92 68.66 77.87 7588
Ransomware 99.95 91.55 95.56 2012

SQL_injection 69.41 69.56 69.49 10041
DDoS_HTTP 94.11 89.79 91.90 9620
DDoS_TCP 98.16 94.06 96.07 10052

Password 57.85 68.23 62.61 9869
Port_Scanning 86.84 99.40 92.70 3985

Vulnerability_Scanner 98.70 92.66 95.58 9985
Backdoor 97.62 98.30 97.96 4883

XSS 64.95 87.18 74.44 3073
Fingerprinting 77.06 76.61 76.83 171
DDoS_UDP 99.90 100 99.95 24316
DDoS_ICMP 99.88 99.54 99.71 13311

Accuracy 97.01 389090
Macro Avg 88.96 89.04 88.71 389090

Weighted Avg 97.26 97.01 97.07 389090

It should be noted that high F1-scores may coexist with a non-zero error rate, particularly in
imbalanced multiclass datasets such as the Edge-IIoTset. While the error rate is a sample-level
metric directly derived from overall accuracy, precision, recall, and F1-score are class-level
metrics that are computed independently for each class and then aggregated using macro or
weighted averaging. In such datasets, misclassifications in minority classes may increase the
overall error rate, even when dominant classes achieve near-perfect precision and recall.
Therefore, F1-scores close to 100% do not necessarily imply a zero-error rate, and the reported
evaluation metrics remain consistent and complementary. Accordingly, both macro-averaged
and weighted-average metrics are reported in this study to provide a balanced evaluation across
majority and minority classes.

6.5.4. Proposed model versus earlier methods in centralized learning
Table 12 compares the proposed model to a set of recent studies that utilized various deep
learning architectures for intrusion detection on the Edge-IIoTset based on the accuracy,
precision, recall, F1-score criteria, along with the training time and testing time in binary, six-
class, and fifteen-class scenarios. The architectural and methodological explanations for the
superiority of the proposed model over earlier methods are discussed below.
The major improvements in the accuracy, precision, recall, and F1-score of the proposed
framework compared to fully connected architectures (DNN) [21,26] stem from a technical
chain of architectural mechanisms. First, the Conv1D layer implements convolution on the
feature vector, helping detect local inter-feature dependencies. This leads to the extraction of
significant spatial patterns, while fully connected architectures transfer all features only as a
flat vector to the next layer, and, therefore, local correlations disappear. Hence, DNNs cannot
represent such dependencies.
Second, the MaxPooling1D layer leads to decreased dimensionality and helps focus on major
patterns, attenuating data noise and moderating the computational load. Third, Dropout
randomly excludes a fraction of neurons during the training phase and, therefore, avoids
overfitting to the training data. As a result, the model not only shows improved accuracy on
the seen data but can also be generalized to unseen data. In light of this chain, the proposed
model yielded reproducible results, even under the six- and fifteen-class scenarios in which the
data were more dispersed and imbalanced. On the other hand, the DNNs showed substantially
lower accuracy and F1-score as they lacked such mechanisms.
In the RNN models, e.g., GRU and LSTM [19], each computational step is dependent on the
output of the previous step due to their sequential processing character. This sequential
dependence prevents parallel training and, therefore, substantially increases the training time
(over 100% longer training times relative to the proposed model). Furthermore, the data of
Edge-IIoTset do not contain long-term temporal dependencies, and, consequently, the major
advantage of RNN models in capturing long-range dependencies is not triggered. As a result,
an increased training time would not improve the performance criteria.
On the other hand, the proposed model performs parallel training on the entire feature sequence
by leveraging Conv1D and simultaneously captures local patterns and key inter-feature
dependencies. This chain remarkably decreases the computational cost and shortens the
training and inference times. In addition, complex integrated models, e.g., CNN+LSTM+GRU
[20], have training times over 200% longer than the proposed model, raise the overfitting risk,
and require stronger hardware resources due to their large depth and multiplicity of parameters.
In contrast, the proposed lightweight architecture, with tailored layers and effectively
optimized hyperparameters, maintained competitive accuracy and F1-score, with substantially
shorter training and testing times.
The use of complex feature extraction blocks has a generic design in the InceptionTime [24]
and DeepAK-IoT [25] architectures, without compatibility with the imbalanced and noisy data

of the Edge-IIoTset. Despite their high learning capacities, such blocks cannot generate
detailed decision boundaries effectively in multiclass scenarios, particularly in the presence of
feature overlaps, and these architectures showed inferior performance to the proposed model.
In contrast, through the optimized number of filters and kernel size based on MI maximization,
the proposed model focused on extracting the most discriminative features. In addition, the use
of an optimized number of layers prevented unnecessary complexity and maintained the
efficiency of the model in separating the classes. This chain of design enabled a more accurate
generation of decision boundaries within classes with overlapping features, leading to
significant improvements in the evaluation criteria compared to earlier architectures under
multiclass scenarios.

Table 12. Proposed model versus earlier works on the Edge-IIoTset in centralized learning

Model

Accuracy (%) Precision (%)
(Macro/Weighted)

Recall (%)
(Macro/Weighted)

F1-Score (%)
(Macro/Weighted)

Train
Time (s)

Test
Time (s)

2-
class

6-
class

15-
class

2-
class 6-class 15-class 2-

class 6-class 15-class 2-
class 6-class 15-class 2-class 6-class 15-class 2-

class
6-

class
15-

class

DNN [21] 99.99 96.01 94.67 NR NR NR NR NR NR NR NR NR NR NR NR NR NR NR

Inception Time [24] - - 94.94 - - NR/98.3 - - NR/92.4 - - NR/95.3 - - NR - - NR

DeepAK-IoT [25] - - 94.96 - - NR/95.40 - - NR - - NR/94.72 - - NR - - NR

Unsupervised Deep
Auto-Encoder [29] 99.7 - - 99.9 - - 100 - - 99.9 - - NR - - NR - -

CNN [19] - - 94.83 - - NA/98.38 - - NR/92.30 - - NR/95.19 - - 1080 - - NR

GRU [19] - - 93.98 - - NR/97.02 - - NR/91.76 - - NR/94.28 - - 2100 - - NR

GRU + CNN [19] - - 94.94 - - NR/98.49 - - NR/92.28 - - NR/95.23 - - 5820 - - NR

LSTM [19] - - 93.93 - - NR/97.45 - - NR/91.28 - - NR/94.21 - - 2160 - - NR

DNN [26] 100 96.78 94.90 100 NR/96.82 NR/95.33 100 NR/96.16 NR/94.90 100 NR/95.97 NR/94.62 715.36 373.88 367.58 20.05 18.11 27.99

CNN + LSTM + GRU
[20] 100 97.44 96.90 100 93/98 90/97 100 91/97 85/97 100 91/97 86/97 1885.46 14803.63 14719.47 42.53 42.20 40.65

DNN [31] 100 98.83 99.39 100 91.58/NR 81.46/NR 100 85.27/NR 75.90/NR 100 86.68/NR 77.67/NR 384.82 363.55 388.24 8.10 6.68 6.74

The Proposed Model 100 97.49 97.01 100 93.88/97.96 88.96/97.26 100 91.25/97.49 89.04/97.01 100 91.50/97.43 88.71/97.07 793.35 4663.87 8935.29 29.36 10.38 21.85

This is a key operational advantage in dew computing settings with limited computational resources and demand for real-time responsiveness, unlike a major
fraction of heavy models in the literature.

6.6. Federated learning
The performance of the proposed model in federated learning under binary, six-class, and
fifteen-class scenarios is reported in this section. The main goal is to evaluate the efficiency of
the model in distributed settings without raw data transmission to the central server, and not
only accuracy but also the communication cost and simulation time are important. For each
scenario, a multi-objective analysis is performed based on the Pareto technique under three key
criteria: the maximization of F1-score (macro) and the minimization of the communication cost
and simulation time. Then, the Pearson correlation analysis (p<0.05) is performed on a set of
criteria, including accuracy, precision (macro), recall (macro), F1-score (macro), simulation
time, communication cost, and number of convergence rounds, to evaluate the inter-index
correlations.
It should be mentioned that the IID data were used for the nodes in the simulations so that the
effects of system parameters (i.e., number of nodes, participation rate, and number of rounds)
could be clearly studied. However, the Edge-IIoTset is intrinsically heterogeneous and
imbalanced and contains protocols, various network features, and attack classes with highly
different frequencies. Therefore, the results reported for the three scenarios can demonstrate
the efficiency of the proposed model in coping with computational resource limitations in the
dew layer and the complexity of real-life data simultaneously.

6.6.1. Simulation configurations and federated learning scenarios
Three key parameters, i.e., the number of nodes, participation rate in each round, and the
number of training rounds, were determined to manage the resource budget and evaluate the
effects of design factors on the performance of federated learning. The combination of these
three parameters controls the total computational and communicational loads of the system.
Therefore, the normalized computational load was designed for a fair comparison of scenarios:

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 =
𝑁𝑁 × 𝐶𝐶 × 𝑅𝑅

6
 (32)

A normalization factor of 6 is set. The product of N×C×R is 6 in the reference scenario (i.e.,
Configuration 1). Dividing all values by this factor yields a computational load of 1 for the
reference scenario, and the values of other scenarios are reported in an undimensionalized and
comparable format. Table 13 lists the configurations of fifteen simulations devised for
federated learning, where the three main parameters (N, C, and R) are provided, along with the
corresponding normalized computational load.

Table 13. Configurations of fifteen federated learning simulations
Simulation ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of
Clients (N) 5 5 5 10 10 10 20 20 20 20 50 50 50 50 50

Client
Participation

Rate (C)
0.1 0.3 1 0.1 0.3 1 0.05 0.2 0.5 1 0.05 0.1 0.3 0.5 1

Number of
Rounds (R) 12 15 18 12 15 18 10 12 15 18 8 10 12 15 18

Normalized
Computational
Load Prediction

1 3.75 15 2 7.5 30 1.66 8 25 60 3.33 8.33 30 62.5 150

The search space of the three main parameters is:

- 𝑁𝑁 ∈ {5,10,20,50};
- 𝐶𝐶 ∈ {0.05,0.1,0.2,0.3,0.5,1};
- 𝑅𝑅 ∈ {8,10,12,15,18}.

These ranges produce 120 possible combinations. However, not all of these combinations are
unique since combinations that have the same product of N×C×R generate the same normalized
computational load (Eq. (32)) and produce duplicate results. To eliminate such redundancy and
enable optimal resource utilization, merely fifteen configurations yielding distinct normalized
computational loads were selected (Table 13). Two configurations with a normalized
computational load of 30 (i.e., Configurations 6 and 13) were not excluded so that the effects
of N and C at a given normalized computational load on stability, latency, and communication
cost could be evaluated.

6.6.2. Binary classification (FedOpt aggregation algorithm)
As shown in Table 14, the lightweight 1D-CNN model produced an accuracy and F1-score of
1.0 in all federated learning simulations. This is explained by the optimized architecture with
a single Conv1D layer that effectively captured the local patterns of network flows and
addressed computational resource limitations in the dew layer. The selection of the FedOpt
aggregation algorithm was also a determinant; the adaptive server optimizer enabled the global
model to converge in only five training rounds, minimizing the communication cost. This
combination indicates that the lightweight design and adaptive aggregation ensured full
accuracy and communicational efficiency at the same time.
This finding is further supported by comparison to centralized learning. In the centralized
setting, the model obtained a test accuracy of 100% and a test loss of nearly 0.0000 within five
epochs and then displayed the same performance in the federated setting.
The main difference lies in the training time and communication cost; the training time was
793 s in the centralized setting, while it was found to vary from 753 to 4629 s in the federated
setting, depending on the configuration. In the optimal configuration (i.e., Configuration 11),
the training time was almost the same as that in the centralized setting, with the advantage that
no raw data was transmitted, and merely model parameters were shifted.
Therefore, although there was a communication overhead, it was negligible compared to full
data transmission, and data privacy was protected. It should also be noted that, despite the IID
data in the nodes, the Edge-IIoTset is intrinsically heterogeneous and imbalanced. Thus, the
high convergence rate with such excellent accuracy demonstrates the efficiency of the model
in handling the complexity of real-life data.
As shown in Fig. 5 and Table 15, Configuration 11 established the best trade-off between the
three key criteria: an F1-score of 100, a communication cost of 0.8 MB, and a simulation time
of 753 s. Despite their identical classification performance, the other configurations were
excluded from the Pareto frontier due to their extremely high communication costs (up to 19.89
MB) and simulation times (up to 4629 s).
This highlights the necessity of choosing optimal values for N, C, and R to control the
computational and communicational loads. Moreover, the Pearson correlation analysis
supported this finding (Fig. 6). The evaluation criteria, i.e., accuracy, precision, recall, and F1-
score, were the same across all configurations; however, a significant, positive correlation
existed between the communication cost and simulation time. In other words, an increase in
the participation rate or the number of rounds merely increases the system overhead and
decreases overall efficiency without improving model quality.

Table 14. Results of fifteen simulation configurations under the binary scenario in federated
learning

Simulation
ID

Accuracy
(%) Loss Rounds to

Convergence
Precision

(%)
Recall

(%)
F1-

Score
(%)

Comm.
Cost
(MB)

Simulation
Time (s)

Inference
Time (s)

1 100 1.00E-15 5 100 100 100 0.80 2147.69 0.1497
2 100 2.95E-15 5 100 100 100 0.80 2111.07 0.1489
3 100 1.37E-17 5 100 100 100 1.99 3744.79 0.1464
4 100 3.30E-17 5 100 100 100 0.80 1334.31 0.1492
5 100 4.98E-18 5 100 100 100 1.19 1391.73 0.1504
6 100 8.40E-17 5 100 100 100 3.98 3820.14 0.151
7 100 1.52E-14 5 100 100 100 0.80 968.22 0.1501
8 100 8.01E-15 5 100 100 100 1.59 1371.13 0.1504
9 100 8.74E-15 5 100 100 100 3.98 2295.39 0.151

10 100 1.21E-15 5 100 100 100 7.96 3701 0.1457
11 100 1.11E-13 5 100 100 100 0.80 753.66 0.1529
12 100 2.60E-14 5 100 100 100 1.99 971.8 0.1501
13 100 5.59E-15 5 100 100 100 5.97 1641.61 0.1482
14 100 2.88E-15 5 100 100 100 9.94 2524.47 0.1616
15 100 5.20E-15 5 100 100 100 19.89 4628.74 0.1725

Fig. 5. Pareto frontier under the binary scenario (trade-off between the communication cost

and simulation time) in federated learning

Table 15. Pareto-optimal configuration corresponding to Fig. 5 under the binary federated
learning scenario

ID F1-Score (Macro)
(%) Comm (MB) Time (s) Conv. Rounds

11 100 0.80 753 5

Fig. 6. Pearson correlation matrix for evaluation criteria under the binary scenario in

federated learning

6.6.3. Six-class scenario (FedAvgM aggregation algorithm)
As shown in Table 16, the lightweight 1D-CNN model with the FedAvgM algorithm showed
satisfactory stability in the six-class scenario, despite its higher complexity than the binary
scenario. In most configurations, accuracy was higher than 96%, and the F1-score (macro)
varied from 0.88 to 0.91. FedAvgM played a significant role in this performance since the
incorporation of the momentum into the aggregation process decreased variations induced by
the intrinsic data heterogeneity of the Edge-IIoTset and shortened and stabilized the
convergence path. The combination of the optimal 1D-CNN model and FedAvgM algorithm
indicates that an efficient and lightweight architecture can be established for dew settings even
under imbalanced and heterogeneous data.
Fig. 7 and Table 17 represent the multi-objective analysis to evaluate the trade-off between
three key criteria: F1-macro, communication cost, and simulation time. Five configurations
(including Configurations 1, 5, 7, 8, and 11) were found to form the Pareto frontier. They
produced an F1-macro of approximately 0.91, which is comparable to centralized learning (F1-
score (macro)=91.50 in 4664 s). However, the training times of the configurations in the Pareto
frontier were significantly shorter, varying from 972 to 3388 s. For example, Configuration 1
was calculated to have an F1-score of 91.25, a communication cost of 11.09 MB, and a time of
2301, representing the best trade-off between the key criteria. This suggests that federated
learning enabled comparable accuracy to centralized learning without raw data transmission
and even displayed superior performance in terms of training time in many configurations.
The Pearson correlation analysis provides deeper insights into these patterns (Fig. 8). The
negative correlation between the F1-score (macro), the number of rounds, and simulation time
(r≈–0.7) suggests that an increase in the training length in heterogeneous data not only does
not improve model quality but also reduces efficiency. Furthermore, the positive correlation
between the communication cost and simulation time (r≈0.61) demonstrates that an increase in
the participation rate of nodes directly raises the system load without significantly improving
accuracy. These findings, along with Pareto analysis, highlight the importance of setting a

limited participation rate and using momentum-based aggregation algorithms since this may
protect data privacy, control the network overhead, and provide a comparable level of accuracy
to centralized learning.
The average inference time for each sample remained in the range of 0.156-0.163 s across all
federated learning simulations (Table 16). This stability indicates that the alteration of N, C, R,
and, thus, computational and communicational loads had no effect on the ultimate prediction
speed of the model. This is explained by the lightweight character of the 1D-CNN architecture;
once training has been completed, the inference process is dependent only on the final model
structure and operates independently of the simulation conditions.

Table 16. Results of fifteen simulation configurations under the six-class scenario in
federated learning

Simulation
ID

Accuracy
(%) Loss Rounds to

Convergence
Precision (%)

(Macro/Weighted)
Recall (%)

(Macro/Weighted)
F1-Score (%)

(Macro/Weighted)
Comm.

Cost
(MB)

Simulation
Time (s)

Inference
Time (s)

1 97.41 0.0558 7 93.62/97.89 91.03/97.41 91.25/97.35 11.09 2301.05 0.1632
2 97.39 0.0566 9 93.35/97.82 91.01/97.39 91.17/97.33 14.26 2946.65 0.1598
3 93.54 0.1333 18 82.55/95.51 81.71/93.54 78.17/93.39 71.29 10016.86 0.1615
4 97.26 0.0628 12 90.51/97.70 90.65/97.26 89.62/97.23 19.01 2643.86 0.1565
5 97.45 0.0566 15 93.64/97.94 91.35/97.45 91.44/97.40 35.64 3388.27 0.1606
6 95.68 0.0843 18 75.65/95.99 87.58/95.68 78.38/95.59 142.57 10650.41 0.1606
7 97.23 0.0613 6 92.54/97.62 90.42/97.23 90.59/97.18 9.50 1132.51 0.1591
8 97.26 0.0601 7 92.91/97.70 90.35/97.26 90.61/97.20 22.18 1688.9 0.1581
9 96.81 0.0694 9 92.77/97.23 87.32/96.81 88.88/96.71 71.29 3481.99 0.1622

10 96.84 0.0723 9 92.43/97.48 88.19/96.84 88.87/96.77 142.57 5643.37 0.1608
11 96.93 0.0699 6 91.50/97.27 88.57/96.93 89.23/96.88 9.50 972 0.1572
12 96.91 0.0663 6 91.52/97.24 87.83/96.91 88.86/96.86 23.76 1165.55 0.1566
13 96.77 0.0725 8 91.22/97.09 87.21/96.77 88.32/96.69 95.05 2571.88 0.1603
14 96.53 0.0751 8 81.33/96.73 86.07/96.53 81.47/96.42 158.41 3945.11 0.1572
15 96.7 0.0751 10 90.94/97.09 87.76/96.70 88.04/96.55 396.04 8118.9 0.1608

Fig. 7. Pareto frontier under the six-class scenario in federated learning (trade-off between

communication cost and simulation time)

Table 17. Pareto-optimal configurations corresponding to Fig. 7 under the six-class federated
learning scenario

ID F1-Score (Macro)
(%) Comm (MB) Time (s) Conv. Rounds

11 89.23 9.50 972 6
7 90.59 9.50 1132 6
1 91.25 11.09 2301 7
8 90.61 22.18 1688 7
5 91.44 35.64 3388 15

Fig. 8. Pearson correlation matrix for evaluation criteria under the six-class scenario in

federated learning

6.6.4. Fifteen-class scenario (FedMedian aggregation algorithm)
As shown in Table 18, the 1D-CNN model maintained a high level of stability and accuracy in
the fifteen-class scenario, despite a significant increase in the complexity and diversity of
classes. The shallow structure of 1D-CNN minimized the computational load in extracting local
features, with no major drop in the key criteria, such as F1-score and precision. The FedMedian
algorithm played a key role since it is robust to inconsistent and imbalanced data and prevents
the deviation of the global model due to the extreme heterogeneity of the Edge-IIoTset,
stabilizing convergence in a limited number of rounds.
Fig. 9 and Table 19 show the multi-objective optimization results. The first Pareto frontier
comprised Configurations 2, 4, 7, 8, 11, and 12, with a trade-off between the three key criteria:
F1-score (macro), simulation time, and communication cost. These configurations yielded an
F1-score (macro) of 0.80-0.85; although the F1-score was smaller than centralized learning
(F1=0.8871), the configurations were found to have significantly shorter training times. For
example, Configuration 11 obtained an F1-score of 0.8012 with a communication cost of 2.83
MB in only 933 s, while an F1-score of 0.881 was achieved within nearly 8935 s in centralized
learning. This indicates that federated learning can significantly decrease the training time and
communication overhead with a slight accuracy drop in limited-resource operational settings,
representing a more practical solution.

These findings are supported by the Pearson correlation coefficients (Fig. 10). It was found that
the F1-score (macro) had strong correlations with precision (macro) (r≈0.92) and recall (macro)
(r≈0.99), suggesting model robustness in various performance aspects. In addition, the positive
correlations between the communication cost and simulation time (r≈0.58) and between the
number of rounds and simulation time (r≈0.90) suggest that an increase in the participation of
nodes or training time directly increases the computational and communicational loads without
a significant improvement in model quality. Therefore, optimizing N, C, and R and restraining
the participation rate would be an effective strategy to achieve communication and time
efficiency, along with an acceptable level of accuracy. The average inference time under the
fifteen-class scenario varied from 0.154 to 0.196 s for each sample. These relatively stable
inference times indicate that a rise in the number of classes had no significant effect on the
online prediction cost, and the 1D-CNN model provided a short response time for real-time
applications, even in more complex scenarios.

Table 18. Results of fifteen simulation configurations under the fifteen-class scenario in
federated learning

Simulation
ID

Accuracy
(%) Loss Rounds to

Convergence
Precision (%)

(Macro/Weighted)
Recall (%)

(Macro/Weighted)
F1-Score (%)

(Macro/Weighted)

Comm.
Cost
(MB)

Simulation
Time (s)

Inference
Time (s)

1 96.62 0.0713 12 89.01/96.97 83.59/96.62 84.14/96.67 5.66 3992.92 0.1646
2 96.67 0.0722 9 89.05/96.93 84.10/96.67 84.54/96.72 4.25 2991.84 0.1543
3 96.55 0.0768 13 89.18/96.92 83.42/96.55 83.62/96.46 15.33 7796.55 0.1578
4 96.62 0.074 10 89.62/97.07 83.08/96.62 84.06/96.69 4.72 2368.98 0.1606
5 96.52 0.0726 15 89.97/97.09 82.67/96.52 83.71/96.56 10.61 4270.93 0.1964
6 95.67 0.1052 18 82.35/96.26 73.87/95.67 74.76/95.41 42.45 12638.28 0.185
7 96.25 0.082 9 87.91/96.76 82.16/96.25 82.19/96.13 4.25 1926 0.1934
8 96.13 0.0838 7 88.22/96.84 81.86/96.13 81.99/95.98 6.60 1701.01 0.1603
9 96.08 0.0828 9 85.99/96.18 80.38/96.08 81.32/96.09 21.23 3475.98 0.1619

10 96.01 0.0914 14 88.29/96.58 80.66/96.01 81.28/95.89 66.04 8715.55 0.1611
11 95.7 0.0957 6 84.78/95.83 79.13/95.70 80.12/95.71 2.83 933.05 0.1551
12 95.78 0.0958 8 85.52/95.91 79.32/95.78 80.52/95.78 9.43 1515.73 0.161
13 95.8 0.0958 8 83.61/95.91 79.00/95.80 79.05/95.81 28.30 2582.91 0.1601
14 96.1 0.0888 14 86.06/96.17 81.20/96.10 81.76/96.11 82.55 7115.5 0.1627
15 95.87 0.0954 18 85.59/96.04 79.28/95.87 80.21/95.84 212.27 8873.4 0.1558

Fig. 9. Pareto frontier under the fifteen-class scenario in federated learning (trade-off between

communication cost and simulation time)

Table 19. Pareto-optimal configurations corresponding to Fig. 9 under the fifteen-class
federated learning scenario

ID F1-Score (Macro)
(%) Comm (MB) Time (s) Conv. Rounds

11 80.12 2.83 933 6
7 82.19 4.25 1926 9
2 84.54 4.25 2991 9
4 84.06 4.72 2368 10
8 81.99 6.60 1701 7

12 80.52 9.43 1515 8

Fig. 10. Pearson correlation matrix for evaluation criteria under the fifteen-class scenario in

federated learning

6.6.5. Analysis of sensitivity to R, N, and C
To further evaluate the performance of the proposed model under various scenarios, the
sensitivity of its efficiency and effectiveness to three key parameters in federated learning, i.e.,
N, C, and R, was measured. Sensitivity analysis allows for measuring the contribution of a
given factor to performance enhancement/degradation and highlights its optimal range or
saturation points. This approach is even more important in real-life settings with limited
resources as it helps select an efficient configuration and avoid resource waste. To derive clear
and concise results, the sensitivity analysis was conducted based on the F1-macro only under
the six-class scenario since it provides an intermediate level of complexity between simple
(binary) and sparse (fifteen-class) scenarios and offers a balanced representation of system
behavior. Furthermore, F1-macro would enable a fairer evaluation on imbalanced data since it
assigns equal weights to classes.
A single-variable analysis was performed to assess the contribution of the number of nodes
(i.e., C and R remained unchanged to capture the independent effect of N). Configurations with
C=1.0 and R=18 were selected since they covered the maximum participation rate and
maximum number of training rounds, and the alteration of N would produce the maximum

outcome. In addition, to obtain a more reliable sensitivity profile, this analysis was conducted
by re-running the federated learning experiments under multiple N configurations rather than
relying on a single limited set of predefined settings. As shown in Fig. 11, increasing the
number of nodes from 5 to around 20 substantially improved F1-macro (from approximately
0.82 to about 0.88). After reaching this range, further increases in N did not yield a consistent
performance gain, and F1-macro remained largely stable with only minor fluctuations across
larger N values up to 50. This indicates that raising the number of nodes up to an effective
range can enhance detection quality by leveraging broader data diversity, whereas beyond an
optimal level the marginal benefits saturate and small oscillations may occur due to increased
dispersion across clients and the stochasticity of distributed training, without providing a clear
improvement in efficiency.
To assess the independent contribution of the participation rate, the number of nodes, and the
number of rounds remained unchanged. Since such a combination of parameters did not exist
in the configurations, the partial dependence plot (PDP) was employed based on regression
analysis. It would estimate the average effect of C on F1-macro by keeping other variables
unchanged. According to Fig. 12, the correlation between the participation rate and
performance was not completely linear or uniform. At smaller participation rates (≈0.1-0.2),
model performance was relatively high since the gradients were mostly stable, and the
communication cost was low. As the participation rate rose to a medium level (0.3-0.6), the
lack of a sample distribution balance and increased gradient noise decreased F1-macro to a
significant extent, despite increased data diversity. At highly large participation rates (>0.7),
almost all nodes participated in each round, and the data heterogeneity effect declined. As a
result, performance began to improve again. This represents an inverted U-curve; highly small
or large participation rates yielded higher performance, while medium participation rates led
to the lowest performance. This finding is essential from a practical perspective. A low
participation rate (≈0.1-0.2) would be optimal when the communication resources are limited
since optimal performance can be achieved. On the other hand, high participation rates (≈1.0)
ensure the maximum performance when accuracy maximization is the primary goal, and there
is no communication limitation. Thus, it is essential to avoid medium participation rates to
prevent poor accuracy and communication resource waste.

Fig. 11. F1-macro versus N (C=1.0 and R=18)

Fig. 12. F1-macro versus C (N=20 and R=15)

Likewise, the independent contribution of the number of training rounds to performance was
evaluated at a given number of nodes and participation rate. However, there was no such
confirmation in the simulations, and the PDP approach was adopted. Fig. 13 plots F1-macro
versus the number of training rounds for 20 nodes and a participation rate of 0.3. An estimated
𝑅𝑅∗ value of nearly 8.4 was found as an approximate threshold to handle the initial instability.
However, the observed data suggest that performance continued to drop at R values of up to
13-14, and stable convergence began at R values above 13-14 in the curve. This difference is
explained by the approximate character of the PDP method, which represents the minimum
smoothed curve slightly earlier than the real minimum. From a practical perspective, the results
suggest that (1) training rounds fewer than 10 leads to a major performance decrease, and (2)
a rise in the number of training rounds above the real threshold (13-14) improves performance;
however, the improvement rate reduces, and a trade-off is to be established between
performance improvement, communication cost, and training time.

Fig. 13. F1-macro versus R (N=20 and C=0.30)

The interaction of the number of nodes and participation rate was also evaluated. In the design
of real-life federated learning systems, these parameters are tuned simultaneously, and altering
one parameter without taking the other into account would lead to incomplete interpretations.
Therefore, the number of training rounds was set to an intermediate level (R=12), and F1-macro
was plotted versus N and C in a contour map to capture the overlapping effect of these two
parameters (Fig. 14). An inverted U-curve was derived, even though its intensity would be
dependent on the network scale; in small to medium networks (N<20), an intermediate
participation rate (C≈0.3-0.6) maximizes the F1-score reduction. In larger networks, on the
other hand, the F1-score reduction is moderated, with lower sensitivity to the participation rate.
In other words, a larger network would enjoy higher robustness to participation rate variations.
However, achieving higher accuracy requires the simultaneous enlargement of N and C as
increasing either parameter is not sufficient. The iso-contours suggest that a moderate
performance level (F1≈0.88) can be achieved even at a small participation rate (C≈0.1) and a
medium network scale (N=10-25); however, higher performance levels (F1=0.91-0.92) would
require a minimum of 20 nodes and a minimum participation rate of 0.2-0.3. The maximum
performance (R≈0.95) can be implemented only by combining large networks (N≈30-50) and
relatively large participation rates (C≈0.35-0.50). Overall, based on the interaction of the
number of nodes and participation rate, it can be concluded that (1) moderate participation rates
are to be avoided in small or medium networks to prevent maximum performance reduction,
(2) maximum performance in larger networks requires a simultaneous enlargement of N and
C, even though the negative effect of medium C levels is lower, and (3) these results
complement the single-variable sensitivity analysis and show that the participation strategy
should be optimized based on the network scale to prevent apparent contradictions in the
interpretation of the outcomes.

Fig. 14. F1-macro versus N and C (R=12)

As mentioned, Configurations 6 and 13 were deliberately incorporated to evaluate the effects
of the internal structure of parameters under the same normalized load. They had a normalized
load of 30 and applied different combinations of parameters (Configuration 6 with R=18, C=1,
and N=10 and Configuration 13 with R=12, C=0.3, and N=50). According to Table 20,
significant differences between the configurations were observed, despite their identical
normalized load. Configuration 13 yielded a greater F1-macro (0.8832>0.7838), converged in

a smaller number of rounds (8<18), and had a lower communication cost (95.05 MB<142.57
MB). As a result, although it can serve as a measure of the overall computational and
communicational pressure, the normalized load is not sufficient for explaining convergence
quality and communication efficiency. The parameter combination (N, C, and R) can
independently affect gradient stability, data diversity, and communication cost. In particular,
the combination of more nodes with a moderate participation rate and fewer training rounds
(Configuration 13) was more effective than the combination of fewer nodes with full node
participation and many training rounds in establishing a robust trade-off between accuracy,
convergence rate, and communication efficiency. Therefore, it can be concluded that an
optimized combination of parameters is as important as overall load management in the design
of federated learning systems.

Table 20. Comparison of Configuration 6 versus Configuration 13 at a given normalized load
Simulation

ID N C R Normalized Computational Load
Prediction

F1-
Macro

Rounds to
Convergence

Comm. Cost
(MB)

6 10 1 18 30 0.7838 18 142.57
13 50 0.3 12 30 0.8832 8 95.05

6.6.6. Real-Time Feasibility and Resource-Efficiency Analysis
To evaluate the practical deployability of the proposed lightweight 1D-CNN in dew-computing
environments, its runtime, memory footprint, and compatibility with resource-constrained
hardware are examined. The analysis focuses on three key aspects: inference latency, memory
consumption, and integration with lightweight inference engines.
The model employs a single Conv1D layer followed by a small dense layer, avoiding recurrent
structures (LSTM/GRU) that introduce sequential dependencies and longer inference times.
The forward-pass complexity is 𝑂𝑂(𝐹𝐹 × 𝐾𝐾 × 𝐿𝐿) for the convolution and 𝑂𝑂(𝐷𝐷𝑖𝑖𝑖𝑖 × 𝐷𝐷𝑜𝑜𝑜𝑜𝑜𝑜) for the
dense layer, where F is the number of filters, K the kernel size, L the length of the input feature
vector (10–40 after MI-based selection), and 𝐷𝐷𝑖𝑖𝑖𝑖,𝐷𝐷𝑜𝑜𝑜𝑜𝑜𝑜 the input/output dimensions of the dense
layer. With typical values (𝐹𝐹 = 32, 𝐾𝐾 = 3, 𝐿𝐿 ≈ 30, 𝐷𝐷𝑖𝑖𝑖𝑖 = 32, and 𝐷𝐷𝑜𝑜𝑜𝑜𝑜𝑜 = 2,6, 𝑜𝑜𝑜𝑜 15), the total
floating-point operations per sample remain below 5 kFLOPs, enabling inference within a few
milliseconds on modest CPUs (e.g., Intel Atom or ARM Cortex-A series).
The total number of trainable parameters ranges from approximately 1 𝑘𝑘–2 𝑘𝑘 for the binary
scenario to 3 𝑘𝑘–5 𝑘𝑘 for the fifteen-class scenario. Storing the model as a 32-bit float
TensorFlow Lite flat-buffer yields a size of ≈  12–20 𝐾𝐾𝐾𝐾, comfortably fitting in the SRAM of
typical dew-layer microcontrollers (e.g., ESP32, Raspberry Pi Pico). During inference, the peak
RAM usage (activations plus intermediate buffers) is below 50 KB, leaving ample room for
other dew-layer tasks.
The purely feed-forward structure and small parameter count make the model directly
convertible to TF-Lite, ONNX Runtime Mobile, or similar edge-optimized frameworks.
Post-training quantization (e.g., INT8) can reduce the model size by 4 times and accelerate
inference by 2–3 times with negligible accuracy loss. Pruning (removing redundant
filters/weights) can additionally shrink the model to under 10 KB without sacrificing detection
performance.
In the federated setting, each local update involves a single epoch over the node’s data subset,
which, thanks to the shallow architecture, completes in seconds even on low-power dew
hardware. The aggregated model delta transmitted per round is merely the difference of the
small parameter set (a few kilobytes), drastically cutting communication costs compared to
raw-data transmission. This design ensures that the overall training loop respects the limited
bandwidth and intermittent connectivity of dew networks.

6.6.7. Proposed model versus earlier frameworks in federated learning
The performance of the proposed model in federal learning is compared to earlier works in this
section. However, this comparison encounters structural limitations since each work had
different definitions of factors, such as the number of clients, client participation rate in each
round, the number of local training rounds, and data split strategy (IID and non-IID). These
setting differences do not allow for a direct comparison under completely identical conditions.
Therefore, Table 21 provides only an overall representation of models in similar scenarios
rather than a solid comparison.
Previous studies [29–31] focused on specific aspects of model design and/or experimental
conditions and reported considerable results. However, they incorporated a limited range of
scenarios or lacked sufficient mechanisms to control communication costs and stability under
real-life IIoT conditions. In contrast, the proposed model yielded better results based on three
key factors. First, the intrinsic characteristics of the model were designed such that not only
computational simplicity would be retained but also effective patterns could be extracted from
massive, diverse data. Second, the selection of aggregation algorithms based on the complexity
level of the system enhanced convergence and stability. Third, the adoption of Bayesian
optimization to tune hyperparameters enabled efficient exploration in a large search space and
provided combinations that established an optimal trade-off between accuracy, training time,
and communication cost.

Table 21. Proposed model versus earlier works under three classification scenarios in
federated learning

Classifier FL Settings
Best Accuracy (%) Best F1-Weighted (%)
2-

class
6-

class
15-

class 2-class 6-class 15-
class

Unsupervised
Deep Auto-Encoder [29]

N=2
R=5 99.8 - - NR - -

CNN [30] 𝑁𝑁 ∈ {3,9,15}
R=50 - - 90.19 - - NR

RNN [30] 𝑁𝑁 ∈ {3,9,15}
R=50 - - 91.26 - - NR

DNN [31] N=10
R=25 100 98.80 98.80 100 86.23 86.23

Proposed Solution
𝑁𝑁 ∈ {5,10,20,50}
𝐶𝐶 ∈ {0.05,0.1,0.2,0.3,0.5,1}
𝑅𝑅 ∈ {8,10,12,15,18}

100 97.45 96.67 100 97.40 96.72

7. Conclusion

The findings demonstrated that the proposed 1D-CNN architecture serves as a lightweight and
effective intrusion detection framework in IIoT systems and dew computing in both centralized
and federated learning settings. This study developed an optimal technique for intrusion
detection in dew settings, which established a trade-off between high accuracy, a short
inference time, and an optimal computational cost. The proposed model was found to
outperform earlier works in terms of quantitative indices and can be deployed in real-life
industrial settings from an operational perspective. The proposed model consistently yielded
high accuracy, precision, recall, and F1-score on the Edge-IIoTset under binary, six-class, and
fifteen-class scenarios, while it had a remarkably short inference time. This is, in particular,
important for implementation in limited-source systems where real-time responsiveness is
required. Two major factors had the greatest contributions to model quality: (1) the use of the
Conv1D layer allowed for extracting local patterns from the time-series data of networks and
effectively detected the discriminative structures of attacks, and (2) the Dropout and optimal

hyperparameter tuning prevented overfitting and enabled stable model performance, even
under imbalanced data conditions. As a result, the proposed model provided a more robust and
effective trade-off between accuracy, time, and computational cost compared to basic
architectures, e.g., DNN, and even heavier models, e.g., CNN+LSTM+GRU. In the federated
learning setting, the proposed model enjoyed key advantages, i.e., the elimination of raw data
exchange and the reduction of the communication cost, while maintaining prediction accuracy.
Sensitivity analysis on key parameters, including the number of nodes N, participation rate C,
and the number of training rounds R, revealed that the system achieved stable convergence in
a wide range of configurations, even though its growing efficiency decreased above an optimal
level. This finding is essential for system designers since the selection of optimal
configurations helps ensure quality and control the communication cost and training time. The
Pareto frontier analysis further demonstrated that points can be identified to establish an
effective trade-off between performance and efficiency. While the proposed lightweight 1D-
CNN is designed as a general-purpose intrusion detection model for dew environments, future
work may explore the integration of specialized or hybrid models for attacks with strong
sequential characteristics, such as MitM, Password, SQL Injection, and Malware. For instance,
protocol-aware or temporal sequence models could be combined with the proposed framework
to enhance the detection of specific intrusion behaviors, provided that sufficient representative
data are available. Moreover, the adoption of techniques such as model pruning, quantization,
or knowledge distillation may enable the deployment of the model in even more limited
devices. Ultimately, non-IID data conditions and explainability mechanism development can
be addressed to enhance trustworthiness and transparency in system decision-making.

Alireza Fadaei: Conceptualization, Data curation, Formal analysis, Funding acquisition,
Investigation, Methodology, Resources, Software, Validation, Visualization, Writing - original
draft, Writing - review & editing. Behrang Barekatain: Conceptualization, Formal analysis,
Investigation, Methodology, Project administration, Supervision, Validation, Writing - review
& editing.

Funding: There was no Funding.

Data and Code Availability:
The source code implemented for the experiments and results presented in this manuscript has
been made publicly available for reproducibility purposes:

• Centralized version
• Federated version

References

1. Mukherjee A, De D, Dey N, Crespo RG, Song HH. Dew as a Service for Intermittently

Connected Internet of Drone Things. In: Internet of Things. Springer Science and
Business Media Deutschland GmbH; 2024. p. 241–60.

2. Khatua S, Manerba D, Maity S, De D. Dew Computing-Based Sustainable Internet of
Vehicular Things. In: Internet of Things [Internet]. Springer Science and Business
Media Deutschland GmbH; 2024. p. 181–205. Available from:
https://link.springer.com/10.1007/978-981-99-4590-0_9

3. Wang Y. Definition and Categorization of Dew Computing. Open Journal of Cloud
Computing (OJCC) [Internet]. 2016;3(1):1–7. Available from: www.ronpub.com/ojcc

https://github.com/Aliz-f/edge-web-attack-detection-centralized
https://github.com/Aliz-f/edge-web-attack-detection-federated

4. Ray PP. An Introduction to Dew Computing: Definition, Concept and Implications.
IEEE Access [Internet]. 2018 Nov 16;6:723–37. Available from:
http://ieeexplore.ieee.org/document/8114187/

5. Roy S, Panda D, Kim BG, Bairagi P, Mondal T, Arosh S, et al. DewMetrics:
Demystification of the Dew Computing in Sustainable Internet of Things. In: Internet of
Things. Springer Science and Business Media Deutschland GmbH; 2024. p. 3–39.

6. Bhattacharyya A, Sau A, Ganguly M. Dew-Computing in Future Telerobotic
Applications: An Exploration. In: Internet of Things. Springer Science and Business
Media Deutschland GmbH; 2024. p. 207–23.

7. Singh P, Kaur A, Aujla GS, Batth RS, Kanhere S. DaaS: Dew Computing as a Service
for Intelligent Intrusion Detection in Edge-of-Things Ecosystem. IEEE Internet Things
J [Internet]. 2021 Aug 15;8(16):12569–77. Available from:
https://ieeexplore.ieee.org/document/9216004/

8. Singh M, Mishra D. Security and Privacy Aspects of Authorized and Secure
Communications in Dew-Assisted IoT Systems. In: De D, Roy S, editors. Dew
Computing: The Sustainable IoT Perspectives [Internet]. Singapore: Springer Nature
Singapore; 2024. p. 79–101. Available from: https://doi.org/10.1007/978-981-99-4590-
0_4

9. Das S, Naskar A, Majumder R, De D, Ahmadpour SS. DewIDS: Dew Computing for
Intrusion Detection System in Edge of Things. In: De D, Roy S, editors. Dew
Computing: The Sustainable IoT Perspectives [Internet]. Singapore: Springer Nature
Singapore; 2024. p. 133–48. Available from: https://link.springer.com/10.1007/978-
981-99-4590-0_7

10. Moussa MM, Alazzawi L. Cyber Attacks Detection based on Deep Learning for Cloud-
Dew Computing in Automotive IoT Applications. In: 2020 IEEE International
Conference on Smart Cloud (SmartCloud) [Internet]. IEEE; 2020. p. 55–61. Available
from: https://ieeexplore.ieee.org/document/9265942/

11. Meng W, Li W, Xiang Y, Choo KKR. A bayesian inference-based detection mechanism
to defend medical smartphone networks against insider attacks. Journal of Network and
Computer Applications [Internet]. 2017 Jan 15;78:162–9. Available from:
https://linkinghub.elsevier.com/retrieve/pii/S1084804516302818

12. Li J, Sun L, Yan Q, Li Z, Srisa-an W, Ye H. Significant Permission Identification for
Machine-Learning-Based Android Malware Detection. IEEE Trans Industr Inform
[Internet]. 2018 Jul 1;14(7):3216–25. Available from:
https://ieeexplore.ieee.org/document/8255798/

13. Yassin W, Udzir NI, Muda Z, Abdullah A, Abdullah MT. A Cloud-based Intrusion
Detection Service framework. In: Proceedings Title: 2012 International Conference on
Cyber Security, Cyber Warfare and Digital Forensic (CyberSec) [Internet]. IEEE; 2012.
p. 213–8. Available from: http://ieeexplore.ieee.org/document/6246098/

14. Alharkan T, Martin P. IDSaaS: Intrusion Detection System as a Service in Public
Clouds. In: 2012 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (ccgrid 2012) [Internet]. IEEE; 2012. p. 686–7. Available from:
http://ieeexplore.ieee.org/document/6217486/

15. Ding Y, Chen S, Xu J. Application of Deep Belief Networks for opcode based malware
detection. In: 2016 International Joint Conference on Neural Networks (IJCNN)
[Internet]. IEEE; 2016. p. 3901–8. Available from:
http://ieeexplore.ieee.org/document/7727705/

16. Zhao G, Zhang C, Zheng L. Intrusion Detection Using Deep Belief Network and
Probabilistic Neural Network. In: 22017 IEEE International Conference on
Computational Science and Engineering (CSE) and IEEE International Conference on

Embedded and Ubiquitous Computing (EUC) [Internet]. IEEE; 2017. p. 639–42.
Available from: http://ieeexplore.ieee.org/document/8005871/

17. Kaiser J, Zimmerer D, Tieck JCV, Ulbrich S, Roennau A, Dillmann R. Spiking
Convolutional Deep Belief Networks. In: Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
[Internet]. Springer Verlag; 2017. p. 3–11. Available from:
http://link.springer.com/10.1007/978-3-319-68612-7_1

18. Tian Q, Han D, Li KC, Liu X, Duan L, Castiglione A. An intrusion detection approach
based on improved deep belief network. Applied Intelligence [Internet]. 2020 Oct
6;50(10):3162–78. Available from: https://link.springer.com/10.1007/s10489-020-
01694-4

19. Konatham B, Simra T, Amsaad F, Ibrahem MI, Jhanjhi NZ. A Secure Hybrid Deep
Learning Technique for Anomaly Detection in IIoT Edge Computing [Internet]. 2024.
Available from: https://www.techrxiv.org/users/662346/articles/706122-a-secure-
hybrid-deep-learning-technique-for-anomaly-detection-in-iiot-edge-
computing?commit=e4d90929f9887c6d4c70d2e54cde6348880c8865

20. Kilichev D, Turimov D, Kim W. Next–Generation Intrusion Detection for IoT EVCS:
Integrating CNN, LSTM, and GRU Models. Mathematics [Internet]. 2024 Feb
14;12(4):571. Available from: https://www.mdpi.com/2227-7390/12/4/571

21. Ferrag MA, Friha O, Hamouda D, Maglaras L, Janicke H. Edge-IIoTset: A New
Comprehensive Realistic Cyber Security Dataset of IoT and IIoT Applications for
Centralized and Federated Learning. IEEE Access [Internet]. 2022;10:40281–306.
Available from: https://ieeexplore.ieee.org/document/9751703/

22. Singh P, Gaba GS, Kaur A, Hedabou M, Gurtov A. Dew-Cloud-Based Hierarchical
Federated Learning for Intrusion Detection in IoMT. IEEE J Biomed Health Inform
[Internet]. 2023 Feb 1;27(2):722–31. Available from:
https://ieeexplore.ieee.org/document/9826463/

23. Liu Q, Wang G, Liu X, Peng T, Wu J. Achieving reliable and secure services in cloud
computing environments. Computers & Electrical Engineering [Internet]. 2017 Apr
1;59:153–64. Available from:
https://linkinghub.elsevier.com/retrieve/pii/S004579061630502X

24. Tareq I, Elbagoury BM, El-Regaily S, El-Horbaty ESM. Analysis of ToN-IoT, UNW-
NB15, and Edge-IIoT Datasets Using DL in Cybersecurity for IoT. Applied Sciences
[Internet]. 2022 Sep 23;12(19):9572. Available from: https://www.mdpi.com/2076-
3417/12/19/9572

25. Ding W, Abdel-Basset M, Mohamed R. DeepAK-IoT: An effective deep learning model
for cyberattack detection in IoT networks. Inf Sci (N Y) [Internet]. 2023 Jul 1;634:157–
71. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0020025523003511

26. Sadhwani S, Modi UK, Muthalagu R, Pawar PM. SmartSentry: Cyber Threat
Intelligence in Industrial IoT. IEEE Access [Internet]. 2024;12:34720–40. Available
from: https://ieeexplore.ieee.org/document/10456888/

27. Laiq F, Al-Obeidat F, Amin A, Moreira F. Securing edge-IIoT networks: a
comprehensive ensemble-based DDoS detection system. Journal of Physics:
Complexity [Internet]. 2025 Jun 1;6(2):025005. Available from:
https://iopscience.iop.org/article/10.1088/2632-072X/ad506b

28. Kumar V, Kumar V. PETDA2C-EC: a privacy-enhancing technique to detect attacks
against confidentiality in edge computing. J Reliab Intell Environ [Internet]. 2025 Jun
9;11(2):8. Available from: https://link.springer.com/10.1007/s40860-025-00248-0

29. Thamar N, Sharara HSE. Unsupervised anomalies detection in IIoT edge devices
networks using federated learning. 2023 Aug 23; Available from:
http://arxiv.org/abs/2308.12175

30. Rashid MM, Khan SU, Eusufzai F, Redwan MdA, Sabuj SR, Elsharief M. A Federated
Learning-Based Approach for Improving Intrusion Detection in Industrial Internet of
Things Networks. Network [Internet]. 2023 Jan 30;3(1):158–79. Available from:
https://www.mdpi.com/2673-8732/3/1/8

31. Popoola SI, Imoize AL, Hammoudeh M, Adebisi B, Jogunola O, Aibinu AM. Federated
Deep Learning for Intrusion Detection in Consumer-Centric Internet of Things. IEEE
Transactions on Consumer Electronics [Internet]. 2024 Feb 1;70(1):1610–22. Available
from: https://ieeexplore.ieee.org/document/10373897/

32. Mallidi SKR, Ramisetty RR. A multi-level intrusion detection system for industrial IoT
using bowerbird courtship-inspired feature selection and hybrid data balancing.
Discover Computing [Internet]. 2025 Jun 7;28(1):109. Available from:
https://link.springer.com/10.1007/s10791-025-09632-z

33. Tawfik M. Optimized intrusion detection in IoT and fog computing using ensemble
learning and advanced feature selection. Singh R, editor. PLoS One [Internet]. 2024 Aug
1;19(8):e0304082. Available from: https://dx.plos.org/10.1371/journal.pone.0304082

34. Roy S, Sankaran S, Zeng M. Green Intrusion Detection Systems: A Comprehensive
Review and Directions. Sensors [Internet]. 2024 Aug 26;24(17):5516. Available from:
https://www.mdpi.com/1424-8220/24/17/5516

35. Yang K, Wang J, Li M. An improved intrusion detection method for IIoT using attention
mechanisms, BiGRU, and Inception-CNN. Sci Rep [Internet]. 2024 Aug
20;14(1):19339. Available from: https://www.nature.com/articles/s41598-024-70094-2

36. Rahman MM, Shakil S Al, Mustakim MR. A survey on intrusion detection system in
IoT networks. Cyber Security and Applications [Internet]. 2025 Dec;3:100082.
Available from: https://linkinghub.elsevier.com/retrieve/pii/S2772918424000481

37. Le K, Luong-Ha N, Nguyen-Duc M, Le-Phuoc D, Do C, Wong KS. Exploring the
Practicality of Federated Learning: A Survey Towards the Communication Perspective.
2024 May 30; Available from: http://arxiv.org/abs/2405.20431

38. Makris I, Karampasi A, Radoglou-Grammatikis P, Episkopos N, Iturbe E, Rios E, et al.
A comprehensive survey of Federated Intrusion Detection Systems: Techniques,
challenges and solutions. Comput Sci Rev [Internet]. 2025 May;56:100717. Available
from: https://linkinghub.elsevier.com/retrieve/pii/S157401372400100X

39. Buyuktanir B, Altinkaya Ş, Karatas Baydogmus G, Yildiz K. Federated learning in
intrusion detection: advancements, applications, and future directions. Cluster Comput
[Internet]. 2025 Sep 4;28(7):473. Available from:
https://link.springer.com/10.1007/s10586-025-05325-w

40. Haque MdE, Polash MdSH, Simla MAIS, Hossain MA, Jahan S. Enhancing IoT Cyber
Attack Detection in the Presence of Highly Imbalanced Data. 2025 May 15; Available
from: http://arxiv.org/abs/2505.10600

41. Shanmugam V, Razavi-Far R, Hallaji E. Addressing Class Imbalance in Intrusion
Detection: A Comprehensive Evaluation of Machine Learning Approaches. Electronics
(Basel) [Internet]. 2024 Dec 27;14(1):69. Available from: https://www.mdpi.com/2079-
9292/14/1/69

42. Tahir M, Abdullah A, Udzir NI, Kasmiran KA. A novel approach for handling missing
data to enhance network intrusion detection system. Cyber Security and Applications
[Internet]. 2025 Dec;3:100063. Available from:
https://linkinghub.elsevier.com/retrieve/pii/S2772918424000298

43. Chen X, Gong Z, Huang D, Jiang N, Zhang Y. Overcoming Class Imbalance in Network
Intrusion Detection: A Gaussian Mixture Model and ADASYN Augmented Deep
Learning Framework. In: Proceedings of the 2024 4th International Conference on
Internet of Things and Machine Learning [Internet]. New York, NY, USA: ACM; 2024.
p. 48–53. Available from: https://dl.acm.org/doi/10.1145/3697467.3697595

44. Skala KA, Davidovi D, Afgan EA, Sovi I. Scalable Distributed Computing Hierarchy:
Cloud, Fog and Dew Computing *. Open Journal of Cloud Computing (OJCC)
[Internet]. 2015;2(1):16–24. Available from:
http://creativecommons.org/licenses/by/3.0/

45. Pandey VK, Sahu D, Prakash S, Rathore RS, Dixit P, Hunko I. A lightweight framework
to secure IoT devices with limited resources in cloud environments. Sci Rep [Internet].
2025 Jul 17;15(1):26009. Available from: https://www.nature.com/articles/s41598-025-
09885-0

46. Alzahrani H, Sheltami T, Barnawi A, Imam M, Yaser A. A Lightweight Intrusion
Detection System Using Convolutional Neural Network and Long Short-Term Memory
in Fog Computing. Computers, Materials & Continua. 2024;80(3):4703–28.

47. Sharifian Z, Barekatain B, Ariza Quintana A, Beheshti Z, Safi-Esfahani F. LOADng-
AT: a novel practical implementation of hybrid AHP-TOPSIS algorithm in reactive
routing protocol for intelligent IoT-based networks. J Supercomput [Internet]. 2022 May
17;78(7):9521–69. Available from: https://link.springer.com/10.1007/s11227-021-
04256-8

48. Tariq N, Alsirhani A, Humayun M, Alserhani F, Shaheen M. A fog-edge-enabled
intrusion detection system for smart grids. Journal of Cloud Computing. 2024 Dec
1;13(1).

49. Ayad AG, Sakr NA, Hikal NA. Fog-empowered anomaly detection in IoT networks
using one-class asymmetric stacked autoencoder. Cluster Comput [Internet]. 2025 Sep
23;28(8):550. Available from: https://link.springer.com/10.1007/s10586-025-05234-y

50. Alves J, Sousa P, Cruz T, Mendes J. A review of architecture features for distributed
and resilient industrial cyber–physical systems. J Manuf Syst [Internet]. 2025
Oct;82:1069–90. Available from:
https://linkinghub.elsevier.com/retrieve/pii/S0278612525001876

51. Majidi F, Khayyambashi MR, Barekatain B. HFDRL: An Intelligent Dynamic
Cooperate Cashing Method Based on Hierarchical Federated Deep Reinforcement
Learning in Edge-Enabled IoT. IEEE Internet Things J [Internet]. 2022 Jan
15;9(2):1402–13. Available from: https://ieeexplore.ieee.org/document/9447004/

52. Pfeiffer K, Rapp M, Khalili R, Henkel J. Federated Learning for Computationally
Constrained Heterogeneous Devices: A Survey. ACM Comput Surv [Internet]. 2023
Dec 31;55(14s):1–27. Available from: https://dl.acm.org/doi/10.1145/3596907

53. Teixeira R, Almeida L, Antunes M, Gomes D, Aguiar RL. Efficient training: Federated
learning cost analysis. Big Data Research. 2025 May;40:100510.

54. Hancock JT, Khoshgoftaar TM. Survey on categorical data for neural networks. J Big
Data [Internet]. 2020 Dec 10;7(1):28. Available from:
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-020-00305-w

55. Poslavskaya E, Korolev A. Encoding categorical data: Is there yet anything “hotter” than
one-hot encoding? 2023 Dec 28; Available from: http://arxiv.org/abs/2312.16930

56. Aurélien G. Chapter 2: End-to-End Machine Learning Project. In: Hands-On Machine
Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques
to Build Intelligent Systems. 2nd ed. Sebastopol, CA: O’Reilly Media; 2019. p. 35–84.

57. Cover TM., Thomas JA. Elements of information theory. Wiley-Interscience; 2006. 748
p.

58. Kraskov A, Stögbauer H, Grassberger P. Estimating mutual information. Phys Rev E.
2004 Jun 23;69(6):066138.

59. Ross BC. Mutual Information between Discrete and Continuous Data Sets. PLoS One.
2014 Feb 19;9(2):e87357.

60. Hanchuan Peng, Fuhui Long, Ding C. Feature selection based on mutual information
criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern
Anal Mach Intell. 2005 Aug;27(8):1226–38.

61. Goodfellow I, Bengio Y, Courville A. Convolutional Networks. In: Deep Learning
[Internet]. 2016 [cited 2025 Aug 18]. p. 330–71. Available from:
https://moodle2.units.it/pluginfile.php/389100/mod_folder/content/0/DL_Goodfellow_
Bengio_Courville%20%281%29.pdf?forcedownload=1

62. Zhou DX. Universality of deep convolutional neural networks. Appl Comput Harmon
Anal. 2020 Mar;48(2):787–94.

63. Qazi EUH, Almorjan A, Zia T. A One-Dimensional Convolutional Neural Network (1D-
CNN) Based Deep Learning System for Network Intrusion Detection. Applied Sciences
[Internet]. 2022 Aug 10;12(16):7986. Available from: https://www.mdpi.com/2076-
3417/12/16/7986

64. Wang Z, Chen H, Yang S, Luo X, Li D, Wang J. A lightweight intrusion detection
method for IoT based on deep learning and dynamic quantization. PeerJ Comput Sci
[Internet]. 2023 Sep 22;9:e1569. Available from: https://peerj.com/articles/cs-1569

65. Zhang C, Bengio S, Hardt M, Recht B, Vinyals O. Understanding deep learning requires
rethinking generalization. 2017 Feb 26; Available from: http://arxiv.org/abs/1611.03530

66. McMahan HB, Moore E, Ramage D, Hampson S, Arcas BA y. Communication-
Efficient Learning of Deep Networks from Decentralized Data. 2023 Jan 26; Available
from: http://arxiv.org/abs/1602.05629

67. Liu W, Chen L, Chen Y, Zhang W. Accelerating Federated Learning via Momentum
Gradient Descent. 2019 Oct 9; Available from: http://arxiv.org/abs/1910.03197

68. Reddi S, Charles Z, Zaheer M, Garrett Z, Rush K, Konečný J, et al. Adaptive Federated
Optimization. 2021 Sep 8; Available from: http://arxiv.org/abs/2003.00295

69. Li T, Sahu AK, Zaheer M, Sanjabi M, Talwalkar A, Smith V. Federated Optimization
in Heterogeneous Networks. 2020 Apr 21; Available from:
http://arxiv.org/abs/1812.06127

70. Pillutla K, Kakade SM, Harchaoui Z. Robust Aggregation for Federated Learning. IEEE
Transactions on Signal Processing [Internet]. 2022 Jan 17;70:1142–54. Available from:
https://ieeexplore.ieee.org/document/9721118/

71. Li T, Sahu AK, Talwalkar A, Smith V. Federated Learning: Challenges, Methods, and
Future Directions. IEEE Signal Process Mag [Internet]. 2019 Aug 21;37(3):50–60.
Available from: http://arxiv.org/abs/1908.07873

72. Kairouz P, McMahan HB, Avent B, Bellet A, Bennis M, Bhagoji AN, et al. Advances
and Open Problems in Federated Learning. 2021 Mar 9; Available from:
http://arxiv.org/abs/1912.04977

73. Tan M, Le Q. EfficientNet: Rethinking Model Scaling for Convolutional Neural
Networks. In: Chaudhuri K, Salakhutdinov R, editors. Proceedings of the 36th
International Conference on Machine Learning [Internet]. PMLR; 2019. p. 6105–14.
(Proceedings of Machine Learning Research; vol. 97). Available from:
https://proceedings.mlr.press/v97/tan19a.html

	Abstract
	1. Introduction
	2. Related Work
	2.1. Intrusion detection systems in dew computing settings
	2.2. Intrusion detection models in cloud, fog, and edge computing
	2.3. Reports on the Edge-IIoTset
	2.3.1. Centralized learning
	2.3.2. Federated learning

	3. Problem Statement
	4. Contributions of the Proposed Model
	5. The Proposed Model: Technical Discussion
	5.1. Centralized learning
	5.2. Federated learning

	6. Simulation Results and Technical Discussion
	6.1. Hardware and software configuration of the simulation system
	6.2. Statistical data distribution
	6.3. Evaluation criteria
	6.3.1. Accuracy
	6.3.2. Precision
	6.3.3. Recall
	6.3.4. F1-score
	6.3.5. Specific evaluation criteria in federated learning

	6.4. Hyperparameter configuration in centralized and federated learning
	6.5. Centralized learning
	6.5.1. Binary scenario
	6.5.2. Six-class scenario
	6.5.3. Fifteen-class scenario
	6.5.4. Proposed model versus earlier methods in centralized learning

	6.6. Federated learning
	6.6.1. Simulation configurations and federated learning scenarios
	6.6.2. Binary classification (FedOpt aggregation algorithm)
	Table 14. Results of fifteen simulation configurations under the binary scenario in federated learning
	6.6.3. Six-class scenario (FedAvgM aggregation algorithm)
	Table 15. Results of fifteen simulation configurations under the six-class scenario in federated learning
	6.6.4. Fifteen-class scenario (FedMedian aggregation algorithm)
	Table 16. Results of fifteen simulation configurations under the fifteen-class scenario in federated learning
	6.6.5. Analysis of sensitivity to R, N, and C
	6.6.6. Real-Time Feasibility and Resource-Efficiency Analysis
	6.6.67. Proposed model versus earlier frameworks in federated learning

	7. Conclusion
	References

